期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
NIR Light-Promoted Whole-Cell Catalysis Based on a Light-Harvesting Blackbody Bioreactor
1
作者 Jinhui Gu Qisi Li +5 位作者 Mengting Cao Xiaojia Zhang Xinpei Ding Haiyan Chen Nan Wang Zhijun Zhang 《Journal of Analysis and Testing》 EI CSCD 2023年第3期237-244,共8页
Whole-cell catalysis,which utilizes enzymes expressed in whole organism(e.g.bacteria and fungi)as the catalyst,is a specific mode of biocatalysis.Compared with pure enzyme catalysis,the catalysis with whole-cell catal... Whole-cell catalysis,which utilizes enzymes expressed in whole organism(e.g.bacteria and fungi)as the catalyst,is a specific mode of biocatalysis.Compared with pure enzyme catalysis,the catalysis with whole-cell catalysts is more cost-effective.However,in the process of whole-cell catalysis,heat treatment is often necessary due to the high optimum temperature of the enzyme.To enable efficient industrial application of whole-cell catalysis,an environmental friendly heating approach is highly desired.Inspired by the light harvest by blackbody materials,in this paper,we introduced a photothermal approach for harnessing the photon energy for enhanced whole-cell catalysis.A blackbody porous sponge(BPS)with excellent photothermal conversion efficiency was prepared as a bioreactor.Escherichia coli expressed with a thermophilic enzyme(β-glucosidase)was utilized as a model whole-cell catalyst.Moreover,the photothermal properties of the BPS and lightassisted whole-cell catalysis were systematically investigated,demonstrating promising application prospects. 展开更多
关键词 Whole-cell catalysis BIOCATALYSIS Photothermal eff ect Near-infrared light response Blackbody materials Porous sponge
原文传递
Near-Infrared Light-Activatable Melanized Paclitaxel Nano-Self-Assemblies for Synergistic Anti-tumor Therapy
2
作者 Qiming Zhu Peizhe Li +5 位作者 Qiwen Huang Xinpei Ding Nan Wang Weijun Yao Maozhong Miao Zhijun Zhang 《Journal of Analysis and Testing》 EI CSCD 2023年第3期204-214,共11页
Building self-assembly nanostructures is an important way to overcome the limitations of paclitaxel in tumor therapy.However,this strategy is also faced with challenges,such as difficulties in efficient release and th... Building self-assembly nanostructures is an important way to overcome the limitations of paclitaxel in tumor therapy.However,this strategy is also faced with challenges,such as difficulties in efficient release and the potential for drug resistance.Herein,we developed a near-infrared light-activatable melanized paclitaxel self-assembly nanoparticles for synergistic anti-tumor therapy.In this strategy,paclitaxel dimer prodrugs were synthesized and paclitaxel nanoparticles were obtained through self-assembly.Finally,the paclitaxel dimer nanoparticles were capped with polydopamine(PDA,melanoidin)and human serum albumin(HSA).The disulfide bonds in paclitaxel dimeric prodrug specifically respond to high concentrations of glutathione(GSH)and reactive oxygen species(ROS)in tumor cells.PDA enhances the biocompatibility of the drug molecules and imparts near-infrared photothermal conversion capability to the nano-self-assemblies.Both the in vitro and in vivo experiments demonstrated that this paclitaxel nanoprodrug exhibited enhanced tumor therapeutic efficacy under near-infrared light irradiation. 展开更多
关键词 Paclitaxel nano-self-assemblies Synergistic anti-tumor therapy Photothermal eff ect MELANOIDINS Nearinfrared light-activatable
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部