The failure cause of a tinned copper wire clamp in marine atmosphere was studied systematically by X-ray photoelectron spectroscopy,scanning electron microscopy with energy dispersive spectroscopy and electrochemical ...The failure cause of a tinned copper wire clamp in marine atmosphere was studied systematically by X-ray photoelectron spectroscopy,scanning electron microscopy with energy dispersive spectroscopy and electrochemical measurements.The main components of the green rust on the surface of the damaged wire clamp are SnO_(2),CuO,Cu_(2)Cl(OH)_(3) and CuCO(OH)_(2).Much of green rust distributes at the platform edge along the axial direction on the crimp connection,and severe corrosion and corrosion pits occur at the platform edge zone along the axial direction.The enriching Cl-at the marine atmosphere and the existing O_(2) in air collectively enhance the corrosion process of the tin coating and the copper matrix.Finite element model results show that the residual stress and strain of the tin coating are the largest at the platform edge along the axial direction on the crimp connection,and the corresponding electrode potential of the tin coating at this zone drops significantly.The above results indicate that the residual strain increases the driving force of the corrosion electrochemical reactions and accelerates the corrosion rate and the pit corrosion of the tin coating at this zone.展开更多
基金supports of National Natural Science Foundation of China(51971191)Henan Provincial Key R&D Program of China(2021GK2008)Youth Backbone Teacher Training Program of Henan Province(2021GGJS004).
文摘The failure cause of a tinned copper wire clamp in marine atmosphere was studied systematically by X-ray photoelectron spectroscopy,scanning electron microscopy with energy dispersive spectroscopy and electrochemical measurements.The main components of the green rust on the surface of the damaged wire clamp are SnO_(2),CuO,Cu_(2)Cl(OH)_(3) and CuCO(OH)_(2).Much of green rust distributes at the platform edge along the axial direction on the crimp connection,and severe corrosion and corrosion pits occur at the platform edge zone along the axial direction.The enriching Cl-at the marine atmosphere and the existing O_(2) in air collectively enhance the corrosion process of the tin coating and the copper matrix.Finite element model results show that the residual stress and strain of the tin coating are the largest at the platform edge along the axial direction on the crimp connection,and the corresponding electrode potential of the tin coating at this zone drops significantly.The above results indicate that the residual strain increases the driving force of the corrosion electrochemical reactions and accelerates the corrosion rate and the pit corrosion of the tin coating at this zone.