Cytocompatibility of high nitrogen nickel-free stainless steel (HNS) with different nitrogen content was evalu- ated and compared with a conventional austenitic stainless steel 317L. The MTT assay (3-(4,5-dimethyl...Cytocompatibility of high nitrogen nickel-free stainless steel (HNS) with different nitrogen content was evalu- ated and compared with a conventional austenitic stainless steel 317L. The MTT assay (3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide) was performed on MG63 osteoblasts to assess the cytotoxicity. The expression of selected marker typical of differentiated osteoblasts, such as alkaline phosphatase activity (AKP), was also monitored in MG63 cells cultured on the tested materials. As a result, HNS had higher cell growth than 317L; meanwhile the cytocompatibility was increased with increasing nitrogen content. Furthermore, HNS enhanced osteoblasts differentiation, as confirmed by AKP activity. Overall these facts indicated that HNS had higher cytocompatibility than 317L and the nitrogen content contributed to the higher cytocompatibility of HNS. The influence of nitrogen on surface energy further explained the cytocompatibility of HNS.展开更多
基金supported by the National Natural Science Foundation of China (No. 31000428)the National Basic Research Program of China ("973 Program",No. 2012CB619101)
文摘Cytocompatibility of high nitrogen nickel-free stainless steel (HNS) with different nitrogen content was evalu- ated and compared with a conventional austenitic stainless steel 317L. The MTT assay (3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide) was performed on MG63 osteoblasts to assess the cytotoxicity. The expression of selected marker typical of differentiated osteoblasts, such as alkaline phosphatase activity (AKP), was also monitored in MG63 cells cultured on the tested materials. As a result, HNS had higher cell growth than 317L; meanwhile the cytocompatibility was increased with increasing nitrogen content. Furthermore, HNS enhanced osteoblasts differentiation, as confirmed by AKP activity. Overall these facts indicated that HNS had higher cytocompatibility than 317L and the nitrogen content contributed to the higher cytocompatibility of HNS. The influence of nitrogen on surface energy further explained the cytocompatibility of HNS.