期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Facile Strategy for Intrinsic Low-Dk and Low-Df Polyimides Enabled by Spirobifluorene Groups
1
作者 Wan-Yi Tan Ling-Feng Jian +9 位作者 Wei-Peng Chen Yong-Wen Zhang Xiao-Chuang Lu Wan-Jun Huang Ji-Sheng Zhang Jing-Wu Wu Jun-Li Feng Yi-Dong Liu Ting-Ting Cui Yong-Gang Min 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第2期288-296,共9页
Modified polyimides(MPIs)show great potential towards 5G communication applications,due to its excellent thermal stability,mechanical property and chemical stability as compared to most of polymers.Introducing fluorid... Modified polyimides(MPIs)show great potential towards 5G communication applications,due to its excellent thermal stability,mechanical property and chemical stability as compared to most of polymers.Introducing fluoride groups or porous structure is favorable to ultra-low dielectric constant(D_(k))and dielectric loss(D_(f)).However,the cost of the fluorinated MPIs is high and their synthetic processes are complicated,and porous MPIs suffer poor mechanical properties.Also,increasing the fraction of free volume is a very effective way to lower D_(k)through introducing more ultra-low-D_(k)air component.However,most of this kind of MPIs lag far behind the fluorinated MPIs and the porous MPIs in terms of ultra-low D_(f),hindering the application of MPIs in high-speed communication devices.Thus,it is highly desirable to develop intrinsic ultra-low-D_(k)/D_(f)MPIs at high frequency with less fluoric groups and nonporous structure.Herein,we introduce a facile and effective strategy to lower D_(k)and D_(f)through introducing rigid and large sterically hindered aromatic groups into MPIs.On the one hand,their large steric hindrance effect leads to low D_(k)by increasing intrinsic free volume.On the other hand,the resulting highly stiff polymer chain and strong intermolecular interaction are favorable to reduce D_(f)by inhibiting dipole orientations.Based on this strategy,the spirobifluorene groups are preferred.The as-prepared MPIs show excellent dielectric performance with low D_(k)of 2.74–2.76 and low D_(f)of 0.00599 at 10 GHz,to some extent,exceeding the multiple fluorinated MPI with D_(k)/D_(f)of 2.67/0.00663 at 10 GHz. 展开更多
关键词 POLYIMIDE High speed communication Low dielectric constant Low dielectric loss
原文传递
Mechanism of vertical crack formation in Yb_(2)SiO_(5) coatings deposited via plasma spray-physical vapor deposition 被引量:6
2
作者 Xiaofeng Zhang Chao Wang +10 位作者 Ruijun Ye Chunming Deng Xinghua Liang Ziqian Deng Shaopeng Niu Jinbing Song Guo Liu Min Liu Kesong Zhou Jian Lu Junli Feng 《Journal of Materiomics》 SCIE EI 2020年第1期102-108,共7页
Plasma spray-physical vapor deposition(i.e.,PS-PVD)is a promising method for obtaining advanced environmental barrier coatings(EBCs).The EBCs must meet some requirements in the application,in which the thermal cycle p... Plasma spray-physical vapor deposition(i.e.,PS-PVD)is a promising method for obtaining advanced environmental barrier coatings(EBCs).The EBCs must meet some requirements in the application,in which the thermal cycle performance affects the service lifetime.The preparation of artificial vertical cracks in Yb_(2)SiO_(5) coatings is an effective approach for meeting the requirements above because vertical cracks provide a strain tolerance.To clarify the formation mechanism of vertical cracks during the PSPVD,the effects of coating thickness and substrate temperature on the formation of vertical cracks were investigated.In addition,the interactions of spray powder and plasma flame during coating deposition were also characterized by optical spectroscopy.It is indicated that vertical cracks are formed due to a thermal expansion mismatch between Yb_(2)SiO_(5) and mullite coating,transient cooling after deposition and the nucleation of evaporated Yb_(2)SiO_(5) as well. 展开更多
关键词 Environmental barrier coatings Yb_(2)SiO_(5)coating Vertical crack PS-PVD
原文传递
Al-modification for PS-PVD 7YSZ TBCs to improve particle erosion and thermal cycle performances
3
作者 Xiaofeng ZHANG Ming LI +9 位作者 Ao ZHANG Shuangquan GUO Jie MAO Chunming DENG Panpan WANG Changguang DENG Junli FENG Min LIU Kesong ZHOU Cheng LAI 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第7期1093-1103,共11页
Plasma spray-physical vapor deposition(PS-PVD)as a novel process was used to prepare feather-like columnar thermal barrier coatings(TBCs).This special microstructure shows good strain tolerance and non-line-of-sight(N... Plasma spray-physical vapor deposition(PS-PVD)as a novel process was used to prepare feather-like columnar thermal barrier coatings(TBCs).This special microstructure shows good strain tolerance and non-line-of-sight(NLOS)deposition,giving great potential application in aero-engine.However,due to serious service environment of aero-engine,particle erosion performance is a weakness for PS-PVD 7YSZ TBCs.As a solution,an Al-modification approach was proposed in this investigation.Through in-situ reaction of Al and ZrO2,anα-Al2O3 overlay can be formed on the surface of 7YSZ columnar coating.The results demonstrate that this approach can improve particle erosion resistance since hardness improvement of Al-modified TBCs.Meanwhile,as another important performance of thermal cycle,it has a better optimization with 350-cycle water-quenching,compared with the as-sprayed TBCs. 展开更多
关键词 plasma spray-physical vapor deposition(PS-PVD) thermal barrier coatings(TBCs) Al-modification particle erosion resistance thermal cycle performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部