期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Co-digestion of food waste and hydrothermal liquid digestate:Promotion effect of self-generated hydrochars 被引量:1
1
作者 Mingshuai Shao Chao Zhang +4 位作者 Xue Wang Ning Wang Qindong Chen Guangyu Cui Qiyong Xu 《Environmental Science and Ecotechnology》 SCIE 2023年第3期77-87,共11页
Hydrothermal treatment(HTT)can efficiently valorize the digestate after anaerobic digestion.However,the disposal of the HTT liquid is challenging.This paper proposes a method to recover energy through the anaerobic co... Hydrothermal treatment(HTT)can efficiently valorize the digestate after anaerobic digestion.However,the disposal of the HTT liquid is challenging.This paper proposes a method to recover energy through the anaerobic co-digestion of food waste and HTT liquid fraction.The effect of HTT liquid recirculation on anaerobic co-digestion performance was investigated.This study focused on the self-generated hydrochars that remained in the HTT supernatant after centrifugation.The effect of the self-generated hydrochars on the methane(CH_(4))yield and microbial communities were discussed.After adding HTT liquids treated at 140 and 180C,the maximum CH4 production increased to 309.36 and 331.61 mL per g COD,respectively.The HTT liquid exhibited a pH buffering effect and kept a favorable pH for the anaerobic co-digestion.In addition,the self-generated hydrochars with higher carbon content and large oxygen-containing functional groups remained in HTT liquid.They increased the electron transferring rate of the anaerobic co-digestion.The increased relative abundance of Methanosarcina,Syntrophomonadaceae,and Synergistota was observed with adding HTT liquid.The results of the principal component analysis indicate that the electron transferring rate constant had positive correlationships with the relative abundance of Methanosarcina,Syntrophomonadaceae,and Synergistota.This study can provide a good reference for the disposal of the HTT liquid and a novel insight regarding the mechanism for the anaerobic co-digestion. 展开更多
关键词 Anaerobic co-digestate Electron transfer Food waste Hydrothermal treatment Microbial community Self-generated hydrochars
原文传递
The influencing mechanism of O_(2),H_(2)O,and CO_(2)on the H_(2)S removal of food waste digestate-derived biochar with abundant minerals 被引量:1
2
作者 Dandan Huang Ning Wang +2 位作者 Xinyue Bai Yuke Chen Qiyong Xu 《Biochar》 SCIE 2022年第1期7-24,共18页
Hydrogen sulfide(H_(2)S)removal has been a significant concern in various industries.In this study,food waste diges-tate-derived biochar(DFW-BC),a by-product of food waste treatment with abundant minerals,was assessed... Hydrogen sulfide(H_(2)S)removal has been a significant concern in various industries.In this study,food waste diges-tate-derived biochar(DFW-BC),a by-product of food waste treatment with abundant minerals,was assessed for removing H_(2)S from different simulated biogas containing oxygen(O_(2))and carbon dioxide(CO_(2))and under differ-ent moisture(H_(2)O)contents(0%and 20%)of biochar.The influencing mechanisms of the gas conditions combined with the moisture contents were also investigated.The results showed an H_(2)S removal of 1.75 mg g^(−1)for dry bio-char under pure H_(2)S,4.29 mg g^(−1)for dry biochar under H_(2)S+O_(2),5.29 mg g^(−1)for humid biochar under H_(2)S,and 12.50 mg g^(−1)for humid biochar under H_(2)S+O_(2).For dry DFW-BC,the high Fe content was responsible for the O_(2)enhancement.In contrast,O_(2)+H_(2)O activated the catalytic H_(2)S oxidation of the less reactive minerals(mainly Ca).The inhibition of CO_(2)on H_(2)S adsorption was not obvious for dry DFW-BC;the specific pore structure may have provided a buffer against the physisorption competition of CO_(2).However,when H_(2)O was present on DFW-BC,the changes in critical biochar properties and sulfur speciation as opposed to that without H_(2)O implied an evident occurrence of CO_(2)chemisorption.This CO_(2)chemisorption partially hindered O_(2)+H_(2)O enhancement,decreasing the H_(2)S removal capacity from 12.50 to 8.88 mg g^(−1).The negative effect was ascribed to mineral carbonation of CO_(2),neutralizing the alkaline surface and immobilizing metal oxides,which thus reduced the acceleration in H_(2)S dissociation and activa-tion in catalytic H_(2)S oxidation by O_(2)+H_(2)O. 展开更多
关键词 Hydrogen sulfide Carbon DIGESTATE Adsorption Desulfuration DEODORIZATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部