Facing the challenges posed by exponentially increasing e-waste,the development of recyclable and tran-sient electronics has paved the way to an environmentally-friendly progression strategy,where electron-ics can dis...Facing the challenges posed by exponentially increasing e-waste,the development of recyclable and tran-sient electronics has paved the way to an environmentally-friendly progression strategy,where electron-ics can disintegrate and/or degrade into eco-friendly end products in a controlled way.Natural polymers possess cost and energy efficiency,easy modification,and fast degradation,all of which are ideal prop-erties for transient electronics.Gelatin is especially attractive due to its unique thermoreversible gelation processes,yet its huge potential as a multifunctional electronic material has not been well-researched due to its limited mechanical strength and low conductivity.Herein,we explored versatile applications of gelatin-based hydrogels through the assistance of multifunctional additives like carbon nanotubes to enhance their electromechanical performances.The optimized gelatin hydrogel displays not only a high conductivity of 0.93 S/m,electromagnetic shielding effectiveness of 39.6 dB,and tensile stress tolerance of 263 kPa,but also shows a negative permittivity phenomenon,which may find versatile applications in novel electronics.As a proof of concept,hydrogels were assembled as wearable sensors to sensitively de-tect static and dynamic pressures and strains generated by solids,liquids,and airflow,as well as diverse body movements.Furthermore,the recyclability,biocompatibility,and degradability of gelatin-based hy-drogels were well studied and analyzed.This work outlines a facile method to design multifunctional transient materials for wearable,sustainable,and eco-friendly electronics.展开更多
As a general problem in the field of batteries,materials produced on a large industrial scale usually possess unsatisfactory electrochemical performances.Among them,manganese-based aqueous rechargeable zinc-ion batter...As a general problem in the field of batteries,materials produced on a large industrial scale usually possess unsatisfactory electrochemical performances.Among them,manganese-based aqueous rechargeable zinc-ion batteries(ARZBs)have been emerging as promising large-scale energy storage systems owing to their high energy densities,low manufacturing cost and intrinsic high safety.However,the direct application of industrial-scale Mn2O3(MO)cathode exhibits poor electrochemical performance especially at high current rates.Herein,a highly reversible Mn-based cathode is developed from the industrial-scale MO by nitridation and following electrochemical oxidation,which triples the ion diffusion rate and greatly promotes the charge transfer.Notably,the cathode delivers a capacity of 161 m Ah g^(-1) at a high current density of 10 A g^(-1),nearly-three times the capacity of pristine MO(60 m Ah g^(-1)).Impressive specific capacity(243.4 m Ah g^(-1))is obtained without Mn^(2+) additive added in the electrolyte,much superior to the pristine MO(124.5 m Ah g^(-1)),suggesting its enhanced reaction kinetics and structural stability.In addition,it possesses an outstanding energy output of 368.4 Wh kg^(-1) at 387.8 W kg^(-1),which exceeds many of reported cathodes in ARZBs,providing new opportunities for the large-scale application of highperformance and low-cost ARZBs.展开更多
Flexible electronics can be seamlessly attached to human skin and used for various purposes, such as pulse monitoring, pressure measurement, tensile sensing, and motion detection. Despite their broad applications, mos...Flexible electronics can be seamlessly attached to human skin and used for various purposes, such as pulse monitoring, pressure measurement, tensile sensing, and motion detection. Despite their broad applications, most flexible electronics do not possess both high sensitivity and wide detection range simultaneously;their sensitivity drops rapidly when they are subjected to even just medium pressure. In this study, ultrabroad-range, high-sensitivity flexible electronics are fabricated through additive manufacturing to address this issue. The key to possess high sensitivity and a wide detection range simultaneously is to fabricate flexible electronics with large depth-width ratio circuit channels using the additive manufacturing inner-rinsing template method. These electronics exhibit an unprecedented high sensitivity of 320 kPa^(−1) over the whole detection range, which ranges from 0.3 to 30,000 Pa (five orders of magnitude). Their minimum detectable weight is 0.02 g (the weight of a fly), which is comparable with human skin. They can stretch to over 500% strain without breaking and show no tensile fatigue after 1000 repetitions of stretching to 100% strain. A highly sensitive and flexible electronic epidermal pulse monitor is fabricated to detect multiple physiological signals, such as pulse signal, breathing rhythm, and real-time beat-to-beat cuffless blood pressure. All of these signals can be obtained simultaneously for detailed health detection and monitoring. The fabrication method does not involve complex expensive equipment or complicated operational processes, so it is especially suitable for the fabrication of large-area, complex flexible electronics. We believe this approach will pave the way for the application of flexible electronics in biomedical detection and health monitoring.展开更多
With their excellent safety, affordability, environmental friendliness and high ionic conductivity, aqueous batteries are prospective contenders to replace lithium-ion batteries. However, the pH of aqueous electrolyte...With their excellent safety, affordability, environmental friendliness and high ionic conductivity, aqueous batteries are prospective contenders to replace lithium-ion batteries. However, the pH of aqueous electrolyte might impact the battery’s electrochemical performance and even its normal operation. It is critical to develop an electrode that can work in different pH settings. The hydrothermal method and vulcanization treatment were used to successfully create copper sulfide(CuS) nanosheet in this work. It can store and transport nonmetal and metal ions as well as polyvalent ions with a high charge radius ratio, and function normally under a variety of pH conditions. The CuS electrode has a considerable capacity(900 mA·h/g) and rate performance under alkaline conditions, as well as an ultra-long discharge platform, which contribute to 80% of the total capacity.展开更多
The emerging biomass-based epoxy vitrimers hold great potential to fulfill the requirements for sustainable development of society.Since the existence of dynamic chemical bonds in vitrimers often reduces both the ther...The emerging biomass-based epoxy vitrimers hold great potential to fulfill the requirements for sustainable development of society.Since the existence of dynamic chemical bonds in vitrimers often reduces both the thermal and mechanical properties of epoxy resins, it is challenging to produce recyclable epoxy vitrimers with both excellent mechanical properties and good thermal stability. Herein, a monomer 4-(((5-(hydroxymethyl)furan-2-yl)methylene)amino)phenol(FCN) containing furan ring with potential to form high density of hydrogen bonding among repeating units is designed and copolymerized with glycerol triglycidyl ether to yield epoxy resin(FCN-GTE), which intrinsically has dual hydrogen bond networks, dynamic imine structure and resultant high performance. Importantly, as compared to the BPA-GTE, the FCN-GTE exhibits significantly improved mechanical properties owing to the increased density of hydrogen bond network and physical crosslinking interaction. Furthermore, density functional theory(DFT) calculation and in situ FTIR analysis is conducted to decipher the formation mechanism of hydrogen bond network. In addition, the FCN-GTE possesses superior UV shielding, chemical degradation, and recyclability because of the existence of abundant imine bonds. Notably, the FCN-GTE-based carbon fiber composites could be completely recycled in an amine solution.This study provides a facile strategy for synthesizing recyclable biomass-based high-performance epoxy vitrimers and carbon fiber composites.展开更多
The polymer electrolyte membrane(PEM)electrolyzers are burdened with costly iridium(Ir)-based catalysts and high operation overpotentials for the oxygen evolution reaction(OER).The development of earth-abundant,highly...The polymer electrolyte membrane(PEM)electrolyzers are burdened with costly iridium(Ir)-based catalysts and high operation overpotentials for the oxygen evolution reaction(OER).The development of earth-abundant,highly active,and durable electrocatalysts to replace Ir is a critical step in reducing the cost of green hydrogen production.Here we develop a Ru5Mo4Ox binary oxide catalyst that exhibits high activity and stability in acidic OER.The electron-withdrawing property of Mo enriches the electrophilic surface oxygen species,which promotes acidic OER to proceed via the adsorbate evolution pathway.As a result,we achieve a 189 mV overpotential at 10 mA·cm^(-2) and a Tafel slope of 48.8 mV·dec^(-1).Our catalyst demonstrates a substantial 18-fold increase in intrinsic activity,as evaluated by turnover frequency,compared to commercially available RuO_(2) and IrO_(2) catalysts.Moreover,we report a stable OER operation at 10 mA·cm^(-2) for 100 h with a low degradation rate of 2.05 mV·h^(-1).展开更多
In recent years,wearable electrochemical biosensors have received increasing attention,benefiting from the growing demand for continuous monitoring for personalized medicine and point-of-care medical assistance.Incorp...In recent years,wearable electrochemical biosensors have received increasing attention,benefiting from the growing demand for continuous monitoring for personalized medicine and point-of-care medical assistance.Incorporating electrochemical biosensing and corresponding power supply into everyday textiles could be a promising strategy for next-generation non-invasive and comfort interaction mode with healthcare.This review starts with the manufacturing and structural design of electrochemical biosensing textiles and discusses a series of wearable electrochemical biosensing textiles monitoring various biomarkers(e.g.,pH,electrolytes,metabolite,and cytokines)at the molecular level.The fiber-shaped or textile-based solar cells and aqueous batteries as corresponding energy harvesting and storage devices are further introduced as a complete power supply for electrochemical biosensing textiles.Finally,we discuss the challenges and prospects relating to sensing textile systems from wearability,durability,washability,sample collection and analysis,and clinical validation.展开更多
A series of large-area,flexible and transparent ultraviolet(UV)photodetectors(PDs)based on Ag nanowire(NW)@ZnO nanorods(NRs)are fabricated by an inexpensive,facile and effective approach.These Ag NW@ZnO NRs are succes...A series of large-area,flexible and transparent ultraviolet(UV)photodetectors(PDs)based on Ag nanowire(NW)@ZnO nanorods(NRs)are fabricated by an inexpensive,facile and effective approach.These Ag NW@ZnO NRs are successfully synthesized using a two-step method in an oil bath with a high surface-to-volume ratio and good crystallinity.The PDs are fabricated by drop-coating with different drop-coating times on the surface of polyethylene terephthalate(PET)coupled with Au electrodes.By optimizing the cross-linked network of Ag NW@ZnO NRs,PD2 with a size greater than 25 mm exhibits excellent photoresponse under UV light illumination of 365 nm(1.3 m W cm^(-2))with a bias of 5 V:a high sensitivity of over 10^(3),and a much shorter rise/decay time of 2.6 s/2.3 s.Simultaneously,the detector exhibits an average transmittance of more than 70%in the visible light region,as well as good flexibility and excellent mechanical stability under a bending angle of 120°over 1000 circles bending.These integral advantages have significant potential for practical applications and mass production.展开更多
Lithium metal batteries with inorganic solid-state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high-energy content and safety.Nonetheless,i...Lithium metal batteries with inorganic solid-state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high-energy content and safety.Nonetheless,inherent challenges of deleterious lithium dendrite growth and poor interfacial stability hinder their commercial application.Herein,we report a liquid metal-coated lithium metal(LM@Li)anode strategy to improve the contact between lithium metal and a Li6PS5Cl inorganic electrolyte.The LM@Li symmetric cell shows over 1000 h of stable lithium plating/stripping cycles at 2mA cm^(-2) and a significantly higher critical current density of 9.8 mAcm^(-2) at 25°C.In addition,a full battery assembled with a high-capacity composite LiNbO3@-LiNi_(0.7)Co_(0.2)Mn_(0.1)O_(2)(LNO@NCM721)cathode shows stable cycling performance.Experimental and computational results have demonstrated that dendrite growth tolerance and physical contact in solid-state batteries can be reinforced by using LM interlayers for interfacial modification.展开更多
Flexible sensors have attracted significant attention as they could be directly attached to/implanted into the body or incorporated into textiles to monitor human activities and give feedbacks for healthcare.A typical...Flexible sensors have attracted significant attention as they could be directly attached to/implanted into the body or incorporated into textiles to monitor human activities and give feedbacks for healthcare.A typical fabrication method is the direct use of intrinsically flexible active materials such as carbon nanotubes(CNTs).CNTs are generally assembled into aligned structures to extend their remarkable chemical,mechanical,and electrical properties to macroscopic scale to afford high sensing performances.In this review,we present the recent advance of CNT assemblies as electrodes or functional materials for flexible sensors.The realizations of aligned CNTs are firstly investigated.A variety of flexible sensors based on the aligned CNTs are then carefully explored,with an emphasis on understanding the working mechanism for their high sensing properties.The main attention is later paid to comparing two main categories of flexible sensors with fiber and film shapes.The remaining challenges are finally highlighted to offer some insights for future study.展开更多
Nb_(2)S_(2)C is a van der Waals type layered superconductor with a transition temperature Tc=7.6 K.In this paper,detailed calculations of the electronic structure and topological properties of Nb_(2)S_(2)C were perfor...Nb_(2)S_(2)C is a van der Waals type layered superconductor with a transition temperature Tc=7.6 K.In this paper,detailed calculations of the electronic structure and topological properties of Nb_(2)S_(2)C were performed from first principles.We find that Nb2S2C is a highly anisotropic metal with multi-band characteristics.In the absence of spin-orbit coupling(SOC),there appears one pair of triply degenerate points created by band inversion along the Γ-A line.When SOC is considered,the triple points are gapped.Intriguingly,two distinct types of topological states,including topological Dirac semimetal and topological insulator states,co-emergence in the vicinity of Fermi level.Moreover,the topology of Nb_(2)S_(2)C is robust to external pressure and the Fermi level can be shifted downward to the topological Dirac semimetal state and topological insulator state at 10 GPa and 14 GPa,respectively.The results herein provide a new platform not only for the studies of physics of low-dimensional superconductor but also for further investigations of topological superconductivity.展开更多
The coupling effects of ultrasonic excitation and high-strain-rate deformation are the core factors for weld formation during ultrasonic welding.However,interfacial deformation behavior still shrouds in uncer-tainty b...The coupling effects of ultrasonic excitation and high-strain-rate deformation are the core factors for weld formation during ultrasonic welding.However,interfacial deformation behavior still shrouds in uncer-tainty because of the contradictory features between mutual dislocation retardation caused by severely frictional deformation and ultrasonic-accelerated dislocation motion.[101]and[111]-oriented Cu single crystals which tended to form geometrically necessary boundaries(GNBs)were selected as the welding substrates to trace the uniquely acoustoplastic effects in the interfacial region under the ultrasonically excited high-strain-rate deformation.It was indicated that for a low energy input,micro-welds localized at the specific interface region,and equiaxed dislocation cells substituting for GNBs dominated in the ini-tial single crystal rotation region.As the welding energy increased,continuous shear deformation drove the dynamic recrystallization region covered by equiaxed grains to spread progressively.Limited discrete dislocations inside the recrystallized grains and nascent dislocation cells at the grain boundaries were ob-served in[101]and[111]joints simultaneously,suggesting that the ultrasonic excitation promoted motion of intragranular dislocation and pile-up along the sub-grain boundaries.The interfacial morphology be-fore and after expansion of recrystallization region all exhibited the weakening of orientation constraint on dislocation motion,which was also confirmed by the similar micro-hardness in joint interface.The first-principle calculation and applied strain-rate analysis further revealed that ultrasonic excitation en-hanced dislocation slipping,and enabled dislocation motion to accommodate severe plastic deformation at a high-strain-rate.展开更多
Ag-Cu bimetallic nanoalloy,integrating the advantages of reducing migration and cost of nano-Ag and alleviating oxidation of nano-Cu,is a prospective bonding material for power electronic packaging.The Ag-coated Cu na...Ag-Cu bimetallic nanoalloy,integrating the advantages of reducing migration and cost of nano-Ag and alleviating oxidation of nano-Cu,is a prospective bonding material for power electronic packaging.The Ag-coated Cu nanoparticles(Cu@Ag NPs)paste can execute bonding with high quality at 250℃,and the achieved supersaturated Ag-Cu nanoalloy joint with ultrahigh shear strength(152 MPa)dramatically exceeds most nano-paste joints.The interstitial solid solutions with atomic-level metallurgical bonds at the interface dominantly promoted the shear strength.Besides,the numerous ultrafine nanograin,high proportion of low angle grain boundaries(7.44%)without deformation,and the Cu nanoprecipitates in the joint would improve subordinately.Furthermore,the high content(16.8%)of∑3 twin boundaries would contribute to the electrical and thermal conductivity.Thus,the multiple strengthening mechanisms with the solid solution,the second precipitated phase,and ultrafine nanograin can dramatically enhance shear strength and electro-thermal conductivity of joints for high-temperature device packaging.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(No.52073075)the Shenzhen Science and Technology Program(No.KQTD20170809110344233)the Initial Scientific Research Foundation of Overseas High-level Talents of Harbin Institute of Technology(Shenzhen)(No.DB11409008).
文摘Facing the challenges posed by exponentially increasing e-waste,the development of recyclable and tran-sient electronics has paved the way to an environmentally-friendly progression strategy,where electron-ics can disintegrate and/or degrade into eco-friendly end products in a controlled way.Natural polymers possess cost and energy efficiency,easy modification,and fast degradation,all of which are ideal prop-erties for transient electronics.Gelatin is especially attractive due to its unique thermoreversible gelation processes,yet its huge potential as a multifunctional electronic material has not been well-researched due to its limited mechanical strength and low conductivity.Herein,we explored versatile applications of gelatin-based hydrogels through the assistance of multifunctional additives like carbon nanotubes to enhance their electromechanical performances.The optimized gelatin hydrogel displays not only a high conductivity of 0.93 S/m,electromagnetic shielding effectiveness of 39.6 dB,and tensile stress tolerance of 263 kPa,but also shows a negative permittivity phenomenon,which may find versatile applications in novel electronics.As a proof of concept,hydrogels were assembled as wearable sensors to sensitively de-tect static and dynamic pressures and strains generated by solids,liquids,and airflow,as well as diverse body movements.Furthermore,the recyclability,biocompatibility,and degradability of gelatin-based hy-drogels were well studied and analyzed.This work outlines a facile method to design multifunctional transient materials for wearable,sustainable,and eco-friendly electronics.
基金supports from the National Natural Science Foundation of China(No.21805063)the Natural Science Foundation of Guangdong Province for Distinguished Young Scholars(No.2018B030306022)+2 种基金the Project of International Science and Technology Cooperation in Guangdong Province(No.2020A0505100016)the Shenzhen Sauvage Nobel Laureate Laboratory for Smart Materialsthe Shenzhen Science and Technology Program(Nos.KQTD20200820113045083,ZDSYS20190902093220279)。
文摘As a general problem in the field of batteries,materials produced on a large industrial scale usually possess unsatisfactory electrochemical performances.Among them,manganese-based aqueous rechargeable zinc-ion batteries(ARZBs)have been emerging as promising large-scale energy storage systems owing to their high energy densities,low manufacturing cost and intrinsic high safety.However,the direct application of industrial-scale Mn2O3(MO)cathode exhibits poor electrochemical performance especially at high current rates.Herein,a highly reversible Mn-based cathode is developed from the industrial-scale MO by nitridation and following electrochemical oxidation,which triples the ion diffusion rate and greatly promotes the charge transfer.Notably,the cathode delivers a capacity of 161 m Ah g^(-1) at a high current density of 10 A g^(-1),nearly-three times the capacity of pristine MO(60 m Ah g^(-1)).Impressive specific capacity(243.4 m Ah g^(-1))is obtained without Mn^(2+) additive added in the electrolyte,much superior to the pristine MO(124.5 m Ah g^(-1)),suggesting its enhanced reaction kinetics and structural stability.In addition,it possesses an outstanding energy output of 368.4 Wh kg^(-1) at 387.8 W kg^(-1),which exceeds many of reported cathodes in ARZBs,providing new opportunities for the large-scale application of highperformance and low-cost ARZBs.
基金This research was funded by the Shenzhen Science and Technology Planning Project(Grant Numbers JCYJ20180507183224565 and ZDSYS20190902093220279)the Shenzhen Peacock Group(Grant Numbers KQTD20170809110344233 and KQTD20200820113045083).
文摘Flexible electronics can be seamlessly attached to human skin and used for various purposes, such as pulse monitoring, pressure measurement, tensile sensing, and motion detection. Despite their broad applications, most flexible electronics do not possess both high sensitivity and wide detection range simultaneously;their sensitivity drops rapidly when they are subjected to even just medium pressure. In this study, ultrabroad-range, high-sensitivity flexible electronics are fabricated through additive manufacturing to address this issue. The key to possess high sensitivity and a wide detection range simultaneously is to fabricate flexible electronics with large depth-width ratio circuit channels using the additive manufacturing inner-rinsing template method. These electronics exhibit an unprecedented high sensitivity of 320 kPa^(−1) over the whole detection range, which ranges from 0.3 to 30,000 Pa (five orders of magnitude). Their minimum detectable weight is 0.02 g (the weight of a fly), which is comparable with human skin. They can stretch to over 500% strain without breaking and show no tensile fatigue after 1000 repetitions of stretching to 100% strain. A highly sensitive and flexible electronic epidermal pulse monitor is fabricated to detect multiple physiological signals, such as pulse signal, breathing rhythm, and real-time beat-to-beat cuffless blood pressure. All of these signals can be obtained simultaneously for detailed health detection and monitoring. The fabrication method does not involve complex expensive equipment or complicated operational processes, so it is especially suitable for the fabrication of large-area, complex flexible electronics. We believe this approach will pave the way for the application of flexible electronics in biomedical detection and health monitoring.
基金Sponsored by the Natural Science Foundation of Guangdong Province for Distinguished Young Scholars (Grant No.2018B030306022)the Project of International Science and Technology Cooperation in Guangdong Province (Grant No.2020A0505100016)the Shenzhen Sauvage Nobel Laureate Laboratory for Smart Materials,and Shenzhen Science and Technology Program (Grant No.KQTD20200820113045083)。
文摘With their excellent safety, affordability, environmental friendliness and high ionic conductivity, aqueous batteries are prospective contenders to replace lithium-ion batteries. However, the pH of aqueous electrolyte might impact the battery’s electrochemical performance and even its normal operation. It is critical to develop an electrode that can work in different pH settings. The hydrothermal method and vulcanization treatment were used to successfully create copper sulfide(CuS) nanosheet in this work. It can store and transport nonmetal and metal ions as well as polyvalent ions with a high charge radius ratio, and function normally under a variety of pH conditions. The CuS electrode has a considerable capacity(900 mA·h/g) and rate performance under alkaline conditions, as well as an ultra-long discharge platform, which contribute to 80% of the total capacity.
基金financially supported by the National Natural Science Foundation of China (Nos.51973118, 22175121,52003160 and 22001175)Key-Area Research and Development Program of Guangdong Province (Nos.2019B010941001 and2019B010929002)+7 种基金the Natural Science Foundation of Guangdong Province (No.2020A1515010644)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08C642)Shenzhen Science and Technology Program (Nos.JCYJ20220818095810022, JSGGZD20220822095201003 and JCYJ20210324095412035)the start-up fund of Shenzhen University (No.000002110820)the Guangdong Natural Science Foundation (Nos.2022A1515011781 and2021A1515110086)Science and Technology Innovation Commission of Shenzhen,China (Nos.RCBS20200714114910141 and JCYJ20210324132816039)the Start-up Grant at Harbin Institute of Technology (Shenzhen),China (Nos.HA45001108 and HA11409049)Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application (No.ZDSYS20220527171407017)。
文摘The emerging biomass-based epoxy vitrimers hold great potential to fulfill the requirements for sustainable development of society.Since the existence of dynamic chemical bonds in vitrimers often reduces both the thermal and mechanical properties of epoxy resins, it is challenging to produce recyclable epoxy vitrimers with both excellent mechanical properties and good thermal stability. Herein, a monomer 4-(((5-(hydroxymethyl)furan-2-yl)methylene)amino)phenol(FCN) containing furan ring with potential to form high density of hydrogen bonding among repeating units is designed and copolymerized with glycerol triglycidyl ether to yield epoxy resin(FCN-GTE), which intrinsically has dual hydrogen bond networks, dynamic imine structure and resultant high performance. Importantly, as compared to the BPA-GTE, the FCN-GTE exhibits significantly improved mechanical properties owing to the increased density of hydrogen bond network and physical crosslinking interaction. Furthermore, density functional theory(DFT) calculation and in situ FTIR analysis is conducted to decipher the formation mechanism of hydrogen bond network. In addition, the FCN-GTE possesses superior UV shielding, chemical degradation, and recyclability because of the existence of abundant imine bonds. Notably, the FCN-GTE-based carbon fiber composites could be completely recycled in an amine solution.This study provides a facile strategy for synthesizing recyclable biomass-based high-performance epoxy vitrimers and carbon fiber composites.
基金financially supported by the National Natural Science Foundation of China (52103300)Guangdong Basic and Applied Basic Research Foundation (2023A1515010572)Shenzhen Science and Technology Program (JCYJ20210324132806017 and GXWD20220811163904001)。
基金support from the National Natural Science Foundation of China(No.52103300)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515010572)+7 种基金the Shenzhen Science and Technology Program(Nos.JCYJ20210324132806017 and GXWD20220811163904001)the Innovation Material Research Center of Harbin Institute of Technology,Shenzhen for the instrumentation assistance.Y.H.W.acknowledges the funding support from the National Natural Science Foundation of China(No.22179088)the Natural Science Foundation of Jiangsu Province of China(No.BK20210699)the National Natural Science Fund for Excellent Young Scientists Fund Program(Overseas)the Program for Jiangsu Specially-Appointed Professors,the Program of Soochow Innovation and Entrepreneurship Leading Talents(No.ZXL2022450)the start-up supports of Soochow University,Suzhou Key Laboratory of Functional Nano&Soft Materials,the Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Project,the Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.J.Z.acknowledges the funding support from the State Key Laboratory of Urban Water Resources&Environment(Harbin Institute of Technology)(No.2022TS36)Computer time made available by the National Supercomputing Center of China in Shenzhen(Shenzhen Cloud Computing Center)is gratefully acknowledged.J.L.acknowledges the start-up funding support from Shanghai Jiao Tong University(No.WH220432516)This research used synchrotron resources of the Advanced Photon Source,an Office of Science User Facility operated for the US Department of Energy Office of Science by Argonne National Laboratory and was supported by the US Department of Energy under contract No.DE-AC02-06CH11357 and the Canadian Light Source and its funding partners.
文摘The polymer electrolyte membrane(PEM)electrolyzers are burdened with costly iridium(Ir)-based catalysts and high operation overpotentials for the oxygen evolution reaction(OER).The development of earth-abundant,highly active,and durable electrocatalysts to replace Ir is a critical step in reducing the cost of green hydrogen production.Here we develop a Ru5Mo4Ox binary oxide catalyst that exhibits high activity and stability in acidic OER.The electron-withdrawing property of Mo enriches the electrophilic surface oxygen species,which promotes acidic OER to proceed via the adsorbate evolution pathway.As a result,we achieve a 189 mV overpotential at 10 mA·cm^(-2) and a Tafel slope of 48.8 mV·dec^(-1).Our catalyst demonstrates a substantial 18-fold increase in intrinsic activity,as evaluated by turnover frequency,compared to commercially available RuO_(2) and IrO_(2) catalysts.Moreover,we report a stable OER operation at 10 mA·cm^(-2) for 100 h with a low degradation rate of 2.05 mV·h^(-1).
基金National Natural Science Foundation of China,Grant/Award Number:52103300Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2023A1515010572Shenzhen Science and Technology Program,Grant/Award Numbers:JCYJ20210324132806017,GXWD20220811163904001。
文摘In recent years,wearable electrochemical biosensors have received increasing attention,benefiting from the growing demand for continuous monitoring for personalized medicine and point-of-care medical assistance.Incorporating electrochemical biosensing and corresponding power supply into everyday textiles could be a promising strategy for next-generation non-invasive and comfort interaction mode with healthcare.This review starts with the manufacturing and structural design of electrochemical biosensing textiles and discusses a series of wearable electrochemical biosensing textiles monitoring various biomarkers(e.g.,pH,electrolytes,metabolite,and cytokines)at the molecular level.The fiber-shaped or textile-based solar cells and aqueous batteries as corresponding energy harvesting and storage devices are further introduced as a complete power supply for electrochemical biosensing textiles.Finally,we discuss the challenges and prospects relating to sensing textile systems from wearability,durability,washability,sample collection and analysis,and clinical validation.
基金supported by the National Natural Science Foundation of China(No.51775140)partially supported by the Shenzhen Science and Technology Plan(No.JCYJ20180507183511908)+2 种基金the National Science and Technology Major Project(No.2017-VⅠ-0009-0080)the Key-Area Research and Development Program of Guangdong Province(No.2019B010935001)the Industry and Information Technology Bureau of Shenzhen Municipality(No.201806071354163490)。
文摘A series of large-area,flexible and transparent ultraviolet(UV)photodetectors(PDs)based on Ag nanowire(NW)@ZnO nanorods(NRs)are fabricated by an inexpensive,facile and effective approach.These Ag NW@ZnO NRs are successfully synthesized using a two-step method in an oil bath with a high surface-to-volume ratio and good crystallinity.The PDs are fabricated by drop-coating with different drop-coating times on the surface of polyethylene terephthalate(PET)coupled with Au electrodes.By optimizing the cross-linked network of Ag NW@ZnO NRs,PD2 with a size greater than 25 mm exhibits excellent photoresponse under UV light illumination of 365 nm(1.3 m W cm^(-2))with a bias of 5 V:a high sensitivity of over 10^(3),and a much shorter rise/decay time of 2.6 s/2.3 s.Simultaneously,the detector exhibits an average transmittance of more than 70%in the visible light region,as well as good flexibility and excellent mechanical stability under a bending angle of 120°over 1000 circles bending.These integral advantages have significant potential for practical applications and mass production.
基金financially supported by the Shenzhen Science and Technology Program (Grant No.KQTD20200820113045083,ZDSYS20190902093220279,and JCYJ20220818102403007)the National Natural Science Foundation of China (52201257)the Shenzhen Research Fund for Returned Scholars (DD11409017).
文摘Lithium metal batteries with inorganic solid-state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high-energy content and safety.Nonetheless,inherent challenges of deleterious lithium dendrite growth and poor interfacial stability hinder their commercial application.Herein,we report a liquid metal-coated lithium metal(LM@Li)anode strategy to improve the contact between lithium metal and a Li6PS5Cl inorganic electrolyte.The LM@Li symmetric cell shows over 1000 h of stable lithium plating/stripping cycles at 2mA cm^(-2) and a significantly higher critical current density of 9.8 mAcm^(-2) at 25°C.In addition,a full battery assembled with a high-capacity composite LiNbO3@-LiNi_(0.7)Co_(0.2)Mn_(0.1)O_(2)(LNO@NCM721)cathode shows stable cycling performance.Experimental and computational results have demonstrated that dendrite growth tolerance and physical contact in solid-state batteries can be reinforced by using LM interlayers for interfacial modification.
基金MOST,Grant/Award Number:2016YFA0203302NSFC,Grant/Award Numbers:52103300,22109067+2 种基金Harbin Institute of Technology,Grant/Award Number:HA45001121Southern University of Science and Technology,Grant/Award Numbers:Y01336230,Y01336130Shenzhen Science and Technology Program,Grant/Award Numbers:JCYJ20210324132806017,KQTD20200820113045083。
文摘Flexible sensors have attracted significant attention as they could be directly attached to/implanted into the body or incorporated into textiles to monitor human activities and give feedbacks for healthcare.A typical fabrication method is the direct use of intrinsically flexible active materials such as carbon nanotubes(CNTs).CNTs are generally assembled into aligned structures to extend their remarkable chemical,mechanical,and electrical properties to macroscopic scale to afford high sensing performances.In this review,we present the recent advance of CNT assemblies as electrodes or functional materials for flexible sensors.The realizations of aligned CNTs are firstly investigated.A variety of flexible sensors based on the aligned CNTs are then carefully explored,with an emphasis on understanding the working mechanism for their high sensing properties.The main attention is later paid to comparing two main categories of flexible sensors with fiber and film shapes.The remaining challenges are finally highlighted to offer some insights for future study.
基金supported by the Natural Science Foundation of China (Grant No. 52073075)Shenzhen Science and Technology Program (Grant No. KQTD20170809110344233)Science and Technology Innovation Talents Program of Henan Province (Grant No. 174200510010)。
文摘Nb_(2)S_(2)C is a van der Waals type layered superconductor with a transition temperature Tc=7.6 K.In this paper,detailed calculations of the electronic structure and topological properties of Nb_(2)S_(2)C were performed from first principles.We find that Nb2S2C is a highly anisotropic metal with multi-band characteristics.In the absence of spin-orbit coupling(SOC),there appears one pair of triply degenerate points created by band inversion along the Γ-A line.When SOC is considered,the triple points are gapped.Intriguingly,two distinct types of topological states,including topological Dirac semimetal and topological insulator states,co-emergence in the vicinity of Fermi level.Moreover,the topology of Nb_(2)S_(2)C is robust to external pressure and the Fermi level can be shifted downward to the topological Dirac semimetal state and topological insulator state at 10 GPa and 14 GPa,respectively.The results herein provide a new platform not only for the studies of physics of low-dimensional superconductor but also for further investigations of topological superconductivity.
基金supported by the National Nat-ural Science Foundation of China(No.52175310)A part of the work was also supported by the National Science and Technology Major Project(No.2017-VI-0009-0080)+1 种基金the Guang-dong Province Key Research and Development Program(No.2019B010935001)and the Shenzhen Science and Technology Plan(No.GXWD20201230155427003-20200821172456002).
文摘The coupling effects of ultrasonic excitation and high-strain-rate deformation are the core factors for weld formation during ultrasonic welding.However,interfacial deformation behavior still shrouds in uncer-tainty because of the contradictory features between mutual dislocation retardation caused by severely frictional deformation and ultrasonic-accelerated dislocation motion.[101]and[111]-oriented Cu single crystals which tended to form geometrically necessary boundaries(GNBs)were selected as the welding substrates to trace the uniquely acoustoplastic effects in the interfacial region under the ultrasonically excited high-strain-rate deformation.It was indicated that for a low energy input,micro-welds localized at the specific interface region,and equiaxed dislocation cells substituting for GNBs dominated in the ini-tial single crystal rotation region.As the welding energy increased,continuous shear deformation drove the dynamic recrystallization region covered by equiaxed grains to spread progressively.Limited discrete dislocations inside the recrystallized grains and nascent dislocation cells at the grain boundaries were ob-served in[101]and[111]joints simultaneously,suggesting that the ultrasonic excitation promoted motion of intragranular dislocation and pile-up along the sub-grain boundaries.The interfacial morphology be-fore and after expansion of recrystallization region all exhibited the weakening of orientation constraint on dislocation motion,which was also confirmed by the similar micro-hardness in joint interface.The first-principle calculation and applied strain-rate analysis further revealed that ultrasonic excitation en-hanced dislocation slipping,and enabled dislocation motion to accommodate severe plastic deformation at a high-strain-rate.
基金This work was financially supported by the National Natu-ral Science Foundation of China(No.NSFC 51775140)A part of the work was also supported by the National Science and Technology Major Project(No.2017-VI-0009-0080)+2 种基金the Guangdong Province key research and development program(No.2019B010935001)the Shenzhen Science and Technology Plan(No.JCYJ20180507183511908)Bureau of Industry and Information Technology of Shenzhen through the Innovation Chain and Industry Chain(No.201806071354163490).
文摘Ag-Cu bimetallic nanoalloy,integrating the advantages of reducing migration and cost of nano-Ag and alleviating oxidation of nano-Cu,is a prospective bonding material for power electronic packaging.The Ag-coated Cu nanoparticles(Cu@Ag NPs)paste can execute bonding with high quality at 250℃,and the achieved supersaturated Ag-Cu nanoalloy joint with ultrahigh shear strength(152 MPa)dramatically exceeds most nano-paste joints.The interstitial solid solutions with atomic-level metallurgical bonds at the interface dominantly promoted the shear strength.Besides,the numerous ultrafine nanograin,high proportion of low angle grain boundaries(7.44%)without deformation,and the Cu nanoprecipitates in the joint would improve subordinately.Furthermore,the high content(16.8%)of∑3 twin boundaries would contribute to the electrical and thermal conductivity.Thus,the multiple strengthening mechanisms with the solid solution,the second precipitated phase,and ultrafine nanograin can dramatically enhance shear strength and electro-thermal conductivity of joints for high-temperature device packaging.