Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ...Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.展开更多
In this paper, Neural Networks (NNs) are used in the modeling of ship maneuvering motion. A nonlinear response model and a linear hydrodynamic model of ship maneuvering motion are also investigated. The maneuverabil...In this paper, Neural Networks (NNs) are used in the modeling of ship maneuvering motion. A nonlinear response model and a linear hydrodynamic model of ship maneuvering motion are also investigated. The maneuverability indices and linear non-dimensional hydrodynamic derivatives in the models are identified by using two-layer feed forward NNs. The stability of parametric estimation is confirmed. Then, the ship maneuvering motion is predicted based on the obtained models. A comparison between the predicted results and the model test results demonstrates the validity of the proposed modeling method.展开更多
An experimental scheme for the generation of directional focusing waves in a wave basin is established in this paper. The effects of the directional range, frequency width and center frequency on the wave focusing are...An experimental scheme for the generation of directional focusing waves in a wave basin is established in this paper. The effects of the directional range, frequency width and center frequency on the wave focusing are studied. The distribution of maximum amplitude and the evolution of time series and spectra during wave packet propagation and the variation of water surface parameters are extensively investigated. The results reveal that the characteristics of focusing waves are significantly influenced by wave directionality and that the breaking criteria for directional waves are distinctly different from those for unidirectional waves.展开更多
The final anomalous sag distortion of the ship girder subjected to the near field underwater explosion (undex) below the middle ship is studied. The sinking exercise of Spruance class destroyer DD973 sunk by one MK4...The final anomalous sag distortion of the ship girder subjected to the near field underwater explosion (undex) below the middle ship is studied. The sinking exercise of Spruance class destroyer DD973 sunk by one MK48 torpedo is first presented, and a simulation model is established. The exponential attenuation phase, the reciprocal attenuation phase, the post reciprocal attenuation phase, and the negative pressure phase of the undex load are precisely applied in this model. The fluid-solid interaction, the added water mass, the gravity, and the change of buoyancy are also taken into account. The similarity theory is then used to analyze the dynamic response of the ship girder. Similarity parameters and theory prediction formulae of the dynamic response of the ship girder are presented, The physical meaning and influences of these similarity parameters are analyzed.展开更多
This paper applies the narrow band Internet of things communication technology to develop a wireless network equipment and communication system, which can quickly set up a network with a radius of 100 km on water surf...This paper applies the narrow band Internet of things communication technology to develop a wireless network equipment and communication system, which can quickly set up a network with a radius of 100 km on water surface. A disposable micro buoy based on narrow-band Internet of things and Beidou positioning function is also developed and used to collect surface hydrodynamic data online. In addition, a web-based public service platform is designed for the analysis and visualization of the data collected by buoys. Combined with the satellite remote sensing data, the study carries a series of marine experiments and studies such as sediment deposition tracking and garbage floating tracking.展开更多
Sloshing phenomenon in the liquid cargo carriers has caught the attention of researchers as the interaction between the sloshing waves and structure is one of the key point and difficulty in the study of sloshing.In t...Sloshing phenomenon in the liquid cargo carriers has caught the attention of researchers as the interaction between the sloshing waves and structure is one of the key point and difficulty in the study of sloshing.In this paper,we captured the free surface with a volume of fluid(VOF) method and then calculated the motions and responses of the structure by adopting the Reynolds-averaged Navier-Stokes(RANS) equations for the whole fluid domain.With the use of user defined functions(UDF) in Fluent,the interaction between fluid and structure was then simulated.As a reasonable simplification,the authors studied the response of a single cantilever in a tank under sloshing loads;Further study should pay more attention to the mechanisms of interaction between sloshing waves and elastic structures.展开更多
Until now, most researches into the rogue-wave-structure interaction have relied on experimental measurement and numerical simulation. Owing to the complexity of the physical mechanism of rogue waves, theoretical stud...Until now, most researches into the rogue-wave-structure interaction have relied on experimental measurement and numerical simulation. Owing to the complexity of the physical mechanism of rogue waves, theoretical study on the wave-structure issue still makes little progress. In this paper, the rogue wave flow around a vertical cylinder is analytically studied within the scope of the potential theory. The rogue wave is modeled by the Gauss envelope, which is one particular case of the well-known focusing theory. The formulae of the wave-induced horizontal force and bending moment are proposed. For the convenience of engineering application, the derived formulae are simplified appropriately, and verified against numerical results. In addition, the influence of wave parameters, such as the energy focusing degree and the wave focusing position, is thoroughly investigated.展开更多
Numerical wave tanks are widely-acknowledged tools in studying waves and wave-structure interactions. They can generate waves under realistic scales and offers more information on the fluid field. However, most numeri...Numerical wave tanks are widely-acknowledged tools in studying waves and wave-structure interactions. They can generate waves under realistic scales and offers more information on the fluid field. However, most numerical wave tanks suffer from issues known as the numerical dissipation and numerical dispersion. The former causes wave energy to be slowly dissipated and the latter shifts wave frequencies during wave propagation. This paper proposes a simple method of depressing numerical dissipation effects on the basis of solving Euler equations using the finite difference method(FDM). The wave propagation solutions are solved analytically taking into account the influence of the damping terms. The main idea of the method is to append a source term to the momentum equation, whose strength is determined by how strong the numerical damping effect is. The method is verified by successfully depressing numerical effects during the simulation of regular linear waves, Stokes waves and irregular waves. By applying the method, wave energy is able to be close to its initial value after long distance of travel.展开更多
Owing to the complexity of the physical mechanisms of rouge waves,the theoretical study of the rogue-wavestructure interaction problems still makes little progress.However,for regular-shaped structures,it is possible ...Owing to the complexity of the physical mechanisms of rouge waves,the theoretical study of the rogue-wavestructure interaction problems still makes little progress.However,for regular-shaped structures,it is possible to give a theoretical analysis,if a relatively simple model of the rogue waves is used.The wave load,induced by a focusing wave which is known as an intuitive basic model of the rouge waves,upon a semi-submerged cylinder is studied analytically.The focusing wave is approximate by the Gauss envelope wave,an ideal model which contains most features of the rogue wave.The diffraction velocity potential is derived through the separation of flow field,and the formulas of the horizontal force and bending moment are proposed.The derived formulas are simplified appropriately,and validated through comparison against numerical results.In addition,the influence of parameters,such as the focusing degree,the submerging depth and the wave focusing position,is thoroughly investigated.展开更多
The rotary forging of a cartridge bottom is simulated by finite element method with DEFORM TM . The analysis of stress and strain rate results indicates that the deformation conditions and the final geometry of a prod...The rotary forging of a cartridge bottom is simulated by finite element method with DEFORM TM . The analysis of stress and strain rate results indicates that the deformation conditions and the final geometry of a product are not completely axis symmetrical under the partial loading conditions during the rotary forging operations. It is therefore required to have a few more rotary forging cycles at the end of total feeding to eliminate nonuniformity. The results of simulation show that the optimization of rotary forging process conditions can be achieved to avoid the underfill defect resulting from improper process conditions. This technology can be used to manufacture ring components with thin bottoms by properly controlling the working process and the tooling motion.展开更多
<div style="text-align:justify;"> Titanium alloy materials are widely used in the marine and aviation fields due to their excellent properties. The submersible sailing on the water surface is faster th...<div style="text-align:justify;"> Titanium alloy materials are widely used in the marine and aviation fields due to their excellent properties. The submersible sailing on the water surface is faster than underwater diving, so once an accident occurs, the consequences are unimaginable. Based on the failure criterion of the J-K model, this paper uses finite element simulation software to study the impact of impact velocity and impact angle on the collision response of a titanium alloy cylindrical pressure shell, providing a reference for the deep sea titanium alloy pressure shell. </div>展开更多
The motion responses of ships carrying liquid cargo are affected not only by external wave excitation, but also by internal sloshing-induced forces and moments. Sloshing flow is coupled with the ship motion. This mean...The motion responses of ships carrying liquid cargo are affected not only by external wave excitation, but also by internal sloshing-induced forces and moments. Sloshing flow is coupled with the ship motion. This means the added resistance in waves may change when sloshing occurs inside the tank of the ship. In this study, the motion responses and added resistance of a ship, coupled with the sloshing-induced internal forces and moments are considered by using the linear potential theory. The three-dimensional Rankine panel method, in which the physical quantities are represented by using B-spline basis function, is applied. The sloshing flow of inner tanks is also simulated by Using the Rankine panel method and linearized boundary value problem. To study the added resistance, a near-field method, which integrates the second-order pressure on a body surface, is applied. The model ship is a blunt modified Wigley model with two inner tanks. Numerical results obtained without inner tanks are compared with the experimental data, and then the effect of filling ratio of inner tanks on ship motion and added resistance are observed. The components that induce added resistance are examined, and the effects of surge motion on sloshing flow and added resistance are briefly considered. This study shows that the sloshing flow inside the inner tanks may significantly influence not only the motion responses, but also added resistance, especially, when the incident wave frequency approaches the resonance frequency of the sloshing flow.展开更多
Oscillating water columns(OWCs)are most widely used in coastal wave energy conversion.The air duct opens into the atmosphere through the air turbine,which is the power take-off device,and this results in a pressure dr...Oscillating water columns(OWCs)are most widely used in coastal wave energy conversion.The air duct opens into the atmosphere through the air turbine,which is the power take-off device,and this results in a pressure drop across the air chamber.However,because of the complex configure of the impulse turbine and its high rotation speed,it is difficult to install it in the experimental simulator and numerical model.Therefore,the turbine damping effects on the operation of the OWC air chamber are induced to predict its performance more accurately.Orifice plates are used as a substitute for the impulse turbine as it generates a similar pressure drop and power output;the experimental and numerical pressure drops and output powers are compared.A 3D numerical wave tank based on the two-phase VOF model is established using the commercial CFD code Fluent,which can predict air flow and pressure variations in the chamber and duct.Water surface elevations,air flow velocity and pressure variation inside the chamber with the orifice plate are studied numerically,and validated by the corresponding experimental data.The air chamber of the Yongsoo OWC pilot plant is used as the engineering project case.The operating performance of the air chamber installed with a 0.428D orifice plate as the substitute for the designed impulse turbine is computed and analyzed.It is found that the turbine damping effects will cause around 30%reduction in the peak values of the pneumatic energy output of the OWC air chamber in the resonant wave domain.展开更多
That whether unidirectional tension changes the influence of incident angle on FSS's(frequency selective surface) electromagnetic(EM) property and whether incident angle changes the effect of unidirectional intens...That whether unidirectional tension changes the influence of incident angle on FSS's(frequency selective surface) electromagnetic(EM) property and whether incident angle changes the effect of unidirectional intension on FSS's EM property is researched.The pattern and magnitude of these changes are revealed.Firstly,the analyses for the mechanism of unidirectional tension's influence and the mechanism of the coupling between the influences of unidirectional tension and incident angle are conducted.Then,according to the mechanism of these influences,Mechanics-Electromagnetics co-analysis is conducted based on mechanics finite element method and electromagnetics finite element method.The frequency responses of the FSS which is under different unidirectional tensions and illuminated by EM wave incident at different angles are gained.The concept"unidirectional tensile sensitivity of FSS"is put forward along with two unidirectional tensile sensitivity factors.By using angular sensitivity-factor and unidirectional tensile sensitivity-factor,the influences of unidirectional tension and incident angle,which are coupled with each other,are expatiated respectively.Research results show that these influences have two sides.Meanwhile,basing on Mode Matching Method and according to the results of numerical investigation,one principle for the layout of FSS with apertures is gained.Several suggestions for further research are given.展开更多
基金supported by the Future Challenge Program through the Agency for Defense Development funded by the Defense Acquisition Program Administration (No.UC200015RD)。
文摘Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.
基金Partially Supported by the Special Item for the Fujian Provincial Department of Ocean and Fisheries(No.MHGX-16)the Special Item for Universities in Fujian Province by the Education Department(No.JK15003)
文摘In this paper, Neural Networks (NNs) are used in the modeling of ship maneuvering motion. A nonlinear response model and a linear hydrodynamic model of ship maneuvering motion are also investigated. The maneuverability indices and linear non-dimensional hydrodynamic derivatives in the models are identified by using two-layer feed forward NNs. The stability of parametric estimation is confirmed. Then, the ship maneuvering motion is predicted based on the obtained models. A comparison between the predicted results and the model test results demonstrates the validity of the proposed modeling method.
基金This research was partially supported by the National Natural Science Foundation of China (Grant No. 50379002),the Korea Research Council of Public Science and Technology (Principal R&D Program) and Korea Ministry of Science and Technology (International Collaboration Research Program)
文摘An experimental scheme for the generation of directional focusing waves in a wave basin is established in this paper. The effects of the directional range, frequency width and center frequency on the wave focusing are studied. The distribution of maximum amplitude and the evolution of time series and spectra during wave packet propagation and the variation of water surface parameters are extensively investigated. The results reveal that the characteristics of focusing waves are significantly influenced by wave directionality and that the breaking criteria for directional waves are distinctly different from those for unidirectional waves.
基金supported by the National Security Major Basic Research 973 Project of China(No.51335020101)
文摘The final anomalous sag distortion of the ship girder subjected to the near field underwater explosion (undex) below the middle ship is studied. The sinking exercise of Spruance class destroyer DD973 sunk by one MK48 torpedo is first presented, and a simulation model is established. The exponential attenuation phase, the reciprocal attenuation phase, the post reciprocal attenuation phase, and the negative pressure phase of the undex load are precisely applied in this model. The fluid-solid interaction, the added water mass, the gravity, and the change of buoyancy are also taken into account. The similarity theory is then used to analyze the dynamic response of the ship girder. Similarity parameters and theory prediction formulae of the dynamic response of the ship girder are presented, The physical meaning and influences of these similarity parameters are analyzed.
基金The National Natural Science Foundation of China under contract No. 41606004。
文摘This paper applies the narrow band Internet of things communication technology to develop a wireless network equipment and communication system, which can quickly set up a network with a radius of 100 km on water surface. A disposable micro buoy based on narrow-band Internet of things and Beidou positioning function is also developed and used to collect surface hydrodynamic data online. In addition, a web-based public service platform is designed for the analysis and visualization of the data collected by buoys. Combined with the satellite remote sensing data, the study carries a series of marine experiments and studies such as sediment deposition tracking and garbage floating tracking.
基金Supported by the National Natural Science Foundation of China under the Grant No.10472032,50879030
文摘Sloshing phenomenon in the liquid cargo carriers has caught the attention of researchers as the interaction between the sloshing waves and structure is one of the key point and difficulty in the study of sloshing.In this paper,we captured the free surface with a volume of fluid(VOF) method and then calculated the motions and responses of the structure by adopting the Reynolds-averaged Navier-Stokes(RANS) equations for the whole fluid domain.With the use of user defined functions(UDF) in Fluent,the interaction between fluid and structure was then simulated.As a reasonable simplification,the authors studied the response of a single cantilever in a tank under sloshing loads;Further study should pay more attention to the mechanisms of interaction between sloshing waves and elastic structures.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51579146,51490674,and51609101)the Shanghai Rising-Star Program(Grant No.16QA1402300)
文摘Until now, most researches into the rogue-wave-structure interaction have relied on experimental measurement and numerical simulation. Owing to the complexity of the physical mechanism of rogue waves, theoretical study on the wave-structure issue still makes little progress. In this paper, the rogue wave flow around a vertical cylinder is analytically studied within the scope of the potential theory. The rogue wave is modeled by the Gauss envelope, which is one particular case of the well-known focusing theory. The formulae of the wave-induced horizontal force and bending moment are proposed. For the convenience of engineering application, the derived formulae are simplified appropriately, and verified against numerical results. In addition, the influence of wave parameters, such as the energy focusing degree and the wave focusing position, is thoroughly investigated.
基金The National Natural Science Foundation of China under contract No.51609101 and 51909103the Natural Science Foundation of Fujian Province of China under contract Nos 2017J01701,2017J05085 and 2018J05090the Outstanding Young University Scientific Research Talents Cultivation Plan of Fujian Province of China
文摘Numerical wave tanks are widely-acknowledged tools in studying waves and wave-structure interactions. They can generate waves under realistic scales and offers more information on the fluid field. However, most numerical wave tanks suffer from issues known as the numerical dissipation and numerical dispersion. The former causes wave energy to be slowly dissipated and the latter shifts wave frequencies during wave propagation. This paper proposes a simple method of depressing numerical dissipation effects on the basis of solving Euler equations using the finite difference method(FDM). The wave propagation solutions are solved analytically taking into account the influence of the damping terms. The main idea of the method is to append a source term to the momentum equation, whose strength is determined by how strong the numerical damping effect is. The method is verified by successfully depressing numerical effects during the simulation of regular linear waves, Stokes waves and irregular waves. By applying the method, wave energy is able to be close to its initial value after long distance of travel.
基金The National Natural Science Foundation of China under contract No.51609101the Natural Science Foundation of Fujian Province of China under contract Nos 2017J01701 and 2017J05085
文摘Owing to the complexity of the physical mechanisms of rouge waves,the theoretical study of the rogue-wavestructure interaction problems still makes little progress.However,for regular-shaped structures,it is possible to give a theoretical analysis,if a relatively simple model of the rogue waves is used.The wave load,induced by a focusing wave which is known as an intuitive basic model of the rouge waves,upon a semi-submerged cylinder is studied analytically.The focusing wave is approximate by the Gauss envelope wave,an ideal model which contains most features of the rogue wave.The diffraction velocity potential is derived through the separation of flow field,and the formulas of the horizontal force and bending moment are proposed.The derived formulas are simplified appropriately,and validated through comparison against numerical results.In addition,the influence of parameters,such as the focusing degree,the submerging depth and the wave focusing position,is thoroughly investigated.
文摘The rotary forging of a cartridge bottom is simulated by finite element method with DEFORM TM . The analysis of stress and strain rate results indicates that the deformation conditions and the final geometry of a product are not completely axis symmetrical under the partial loading conditions during the rotary forging operations. It is therefore required to have a few more rotary forging cycles at the end of total feeding to eliminate nonuniformity. The results of simulation show that the optimization of rotary forging process conditions can be achieved to avoid the underfill defect resulting from improper process conditions. This technology can be used to manufacture ring components with thin bottoms by properly controlling the working process and the tooling motion.
文摘<div style="text-align:justify;"> Titanium alloy materials are widely used in the marine and aviation fields due to their excellent properties. The submersible sailing on the water surface is faster than underwater diving, so once an accident occurs, the consequences are unimaginable. Based on the failure criterion of the J-K model, this paper uses finite element simulation software to study the impact of impact velocity and impact angle on the collision response of a titanium alloy cylindrical pressure shell, providing a reference for the deep sea titanium alloy pressure shell. </div>
基金partly funded by the Ministry of Trade,Industry and Energy(MOTIE),Korea,under Industrial Technology Innovation Program(Grant No.10062881),“Technology Development to Improve Added Resistance and Ship Operational Efficiency for Hull Form Design,”the NICOP project Grant No.N62909-15-1-2020,supported by Office of Naval Research Globalpartly funded by the LRF*–Funded Research Center at Seoul National University
文摘The motion responses of ships carrying liquid cargo are affected not only by external wave excitation, but also by internal sloshing-induced forces and moments. Sloshing flow is coupled with the ship motion. This means the added resistance in waves may change when sloshing occurs inside the tank of the ship. In this study, the motion responses and added resistance of a ship, coupled with the sloshing-induced internal forces and moments are considered by using the linear potential theory. The three-dimensional Rankine panel method, in which the physical quantities are represented by using B-spline basis function, is applied. The sloshing flow of inner tanks is also simulated by Using the Rankine panel method and linearized boundary value problem. To study the added resistance, a near-field method, which integrates the second-order pressure on a body surface, is applied. The model ship is a blunt modified Wigley model with two inner tanks. Numerical results obtained without inner tanks are compared with the experimental data, and then the effect of filling ratio of inner tanks on ship motion and added resistance are observed. The components that induce added resistance are examined, and the effects of surge motion on sloshing flow and added resistance are briefly considered. This study shows that the sloshing flow inside the inner tanks may significantly influence not only the motion responses, but also added resistance, especially, when the incident wave frequency approaches the resonance frequency of the sloshing flow.
基金supported by the National Natural Science Foundation of China(Grant No.51279190&51311140259)Shandong Natural Science Funds for Distinguished Young Scholar(Grant No.JQ201314)+1 种基金"111"Project(Grant No.B14028)KRISO Endowment(Grant No.PES 2190)
文摘Oscillating water columns(OWCs)are most widely used in coastal wave energy conversion.The air duct opens into the atmosphere through the air turbine,which is the power take-off device,and this results in a pressure drop across the air chamber.However,because of the complex configure of the impulse turbine and its high rotation speed,it is difficult to install it in the experimental simulator and numerical model.Therefore,the turbine damping effects on the operation of the OWC air chamber are induced to predict its performance more accurately.Orifice plates are used as a substitute for the impulse turbine as it generates a similar pressure drop and power output;the experimental and numerical pressure drops and output powers are compared.A 3D numerical wave tank based on the two-phase VOF model is established using the commercial CFD code Fluent,which can predict air flow and pressure variations in the chamber and duct.Water surface elevations,air flow velocity and pressure variation inside the chamber with the orifice plate are studied numerically,and validated by the corresponding experimental data.The air chamber of the Yongsoo OWC pilot plant is used as the engineering project case.The operating performance of the air chamber installed with a 0.428D orifice plate as the substitute for the designed impulse turbine is computed and analyzed.It is found that the turbine damping effects will cause around 30%reduction in the peak values of the pneumatic energy output of the OWC air chamber in the resonant wave domain.
基金the Defense Science and Technology Advance-research for Ship Industry
文摘That whether unidirectional tension changes the influence of incident angle on FSS's(frequency selective surface) electromagnetic(EM) property and whether incident angle changes the effect of unidirectional intension on FSS's EM property is researched.The pattern and magnitude of these changes are revealed.Firstly,the analyses for the mechanism of unidirectional tension's influence and the mechanism of the coupling between the influences of unidirectional tension and incident angle are conducted.Then,according to the mechanism of these influences,Mechanics-Electromagnetics co-analysis is conducted based on mechanics finite element method and electromagnetics finite element method.The frequency responses of the FSS which is under different unidirectional tensions and illuminated by EM wave incident at different angles are gained.The concept"unidirectional tensile sensitivity of FSS"is put forward along with two unidirectional tensile sensitivity factors.By using angular sensitivity-factor and unidirectional tensile sensitivity-factor,the influences of unidirectional tension and incident angle,which are coupled with each other,are expatiated respectively.Research results show that these influences have two sides.Meanwhile,basing on Mode Matching Method and according to the results of numerical investigation,one principle for the layout of FSS with apertures is gained.Several suggestions for further research are given.