Organic aerosol (OA) is a crucial component of atmospheric fine particles. To achieve a better understanding of the chemical characteristics and sources of OA in Beijing, the size-resolved chemical composition of subm...Organic aerosol (OA) is a crucial component of atmospheric fine particles. To achieve a better understanding of the chemical characteristics and sources of OA in Beijing, the size-resolved chemical composition of submicron aerosols were measured in-situ using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer in the winter of 2010, with a high time resolution of 5 min. During this study, the mean OA mass concentration was 20.9±25.3 μg/m3, varying between 1.9 and 284.6 μg/m3. Elemental analysis showed that the average H/C, O/C and N/C (molar ratio) were 1.70, 0.17, and 0.005, respectively, corresponding to an OM/OC ratio (mass ratio of organic matter to organic carbon) of 1.37. The average mass-based size distributions of OA present a promi- nent accumulation mode peaking at approximately 450 nm. The prominent presence of ultrafine particles (Dva < 100 nm) was mainly from the fresh emissions of combustion sources. A Positive Matrix Factorisation (PMF) analysis of the organic mass spectral dataset differentiated the OA into three components, including hydrocarbon-like (HOA), cooking-related (COA), and oxygenated (OOA) organic aerosols, which, on average, accounted for 26.9%, 49.7% and 23.4%, respectively, of the total organic mass. The HOA and COA likely corresponded to primary organic aerosol (POA) associated with combustion-related and cooking emissions, respectively, and the OOA components corresponded to aged secondary organic aerosol (SOA).展开更多
文摘Organic aerosol (OA) is a crucial component of atmospheric fine particles. To achieve a better understanding of the chemical characteristics and sources of OA in Beijing, the size-resolved chemical composition of submicron aerosols were measured in-situ using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer in the winter of 2010, with a high time resolution of 5 min. During this study, the mean OA mass concentration was 20.9±25.3 μg/m3, varying between 1.9 and 284.6 μg/m3. Elemental analysis showed that the average H/C, O/C and N/C (molar ratio) were 1.70, 0.17, and 0.005, respectively, corresponding to an OM/OC ratio (mass ratio of organic matter to organic carbon) of 1.37. The average mass-based size distributions of OA present a promi- nent accumulation mode peaking at approximately 450 nm. The prominent presence of ultrafine particles (Dva < 100 nm) was mainly from the fresh emissions of combustion sources. A Positive Matrix Factorisation (PMF) analysis of the organic mass spectral dataset differentiated the OA into three components, including hydrocarbon-like (HOA), cooking-related (COA), and oxygenated (OOA) organic aerosols, which, on average, accounted for 26.9%, 49.7% and 23.4%, respectively, of the total organic mass. The HOA and COA likely corresponded to primary organic aerosol (POA) associated with combustion-related and cooking emissions, respectively, and the OOA components corresponded to aged secondary organic aerosol (SOA).