The unsupported sleeper can change the load characteristics of ballast particles and thus affect the dynamic stability of a ballasted bed.In this work,a laboratory test was constructed on a ballasted track containing ...The unsupported sleeper can change the load characteristics of ballast particles and thus affect the dynamic stability of a ballasted bed.In this work,a laboratory test was constructed on a ballasted track containing unsupported sleepers.The ballasted track was excited by a wheelset,and the influence of unsupported sleepers on the dynamic stability of a ballasted bed was studied.The results show that the main frequency of the sleeper vibration appeared at 670 Hz,and the first-order rigid vibration mode at the frequency of 101 Hz had a significant effect on the condition without the unsupported sleeper.When the sleepers were continuously unsupported,the vibration damping effect of ballasted bed within the frequency range of 0–450 Hz was better than that at higher frequencies.Within the frequency range of 70–250 Hz,the vibration damping effect of the ballasted bed with unsupported sleepers was better than that without the unsupported sleeper.Owing to the excitation from the wheelset impact,the lateral resistance of the ballasted bed with unsupported sleepers whose hanging heights were 30,60,and 90 mm increased by 37.43%,12.25%,and 18.23%,respectively,while the lateral resistance of the ballasted bed without the unsupported sleeper remained basically unchanged.The unsupported sleeper could increase the difference in the quality of the ballasted bed between two adjacent sleepers.In addition,test results show that the hanging height of the unsupported sleeper had little effect on the lateral resistance of a ballasted bed without external excitation,but had an obvious effect on the rate of change of the lateral resistance of a ballasted bed and the acceleration amplitude of the sleeper vibration under the wheelset impact.展开更多
Since the classical element model cannot describe the nonlinear characteristics of rock during the entire compressive creep process,nonlinear elements and creep damage are generally introduced in the model to resolve ...Since the classical element model cannot describe the nonlinear characteristics of rock during the entire compressive creep process,nonlinear elements and creep damage are generally introduced in the model to resolve this issue.However,several previous studies have reckoned that creep damage in rock only occurs in the accelerated creep stage and is only described by the Weibull distribution.Nevertheless,the creep damage mechanism of rocks is still not clearly understood.In this study,a reasonable representation of the damage variables of solid materials is presented.Specifically,based on the Gurson damage model,the damage state functions reflecting the constant creep stage and accelerated creep stage of rock are established.Further,the one-dimensional and three-dimensional creep damage constitutive equations of rock are derived by modifying the Nishihara model.Finally,the creep-acoustic emission tests of phyllite under different confining pressures are conducted to examine the creep damage characteristics of phyllite.And the proposed constitutive model is verified by analyzing the results of creep tests performed on saturated phyllite.Overall,this study reveals the relationship between the creep characteristics of rocks and the corresponding damage evolution pattern,which bridges the gap between the traditional theory and the quantitative analysis of rock creep and its damage pattern.展开更多
Discontinuity is critical for strength,deformability,and permeability of rock mass.Set information is one of the essential discontinuity characteristics and is usually accessed by orientation grouping.Traditional meth...Discontinuity is critical for strength,deformability,and permeability of rock mass.Set information is one of the essential discontinuity characteristics and is usually accessed by orientation grouping.Traditional methods of identifying optimal discontinuity set numbers are usually achieved by clustering validity indexes,which mainly relies on the aggregation and dispersion of clusters and leads to the inaccuracy and instability of evaluation.This paper proposes a new method of Fisher mixed evaluation(FME)to identify optimal group numbers of rock mass discontinuity orientation.In FME,orientation distribution is regarded as the superposition of Fisher mixed distributions.Optimal grouping results are identified by considering the fitting accuracy of Fisher mixed distributions,the probability monopoly and central location significance of independent Fisher centers.A Halley-Expectation-Maximization(EM)algorithm is derived to achieve an automatic fitting of Fisher mixed distribution.Three real rock discontinuity models combined with three orientation clustering algorithms are adopted for discontinuity grouping.Four clustering validity indexes are used to automatically identify optimal group numbers for comparison.The results show that FME is more accurate and robust than the other clustering validity indexes in optimal discontinuity group number identification for different rock models and orientation clustering algorithms.展开更多
During the service lives of ballasted tracks,the ballast experiences degradation,such as breakage and fragmentation,which reduces the stability of the tracks.Ballast breakage is directly related to the shapes,sizes,an...During the service lives of ballasted tracks,the ballast experiences degradation,such as breakage and fragmentation,which reduces the stability of the tracks.Ballast breakage is directly related to the shapes,sizes,and stress states of particles.The key to solving this problem is to determine the breakage parameters of railway ballast.In this study,through uniaxial compression and uniaxial shear tests,the factors associated with ballast breakage for a simple stress state were obtained.Then,a refined discrete element model of railway ballast was established.The Box-Behnken method was used to design a simulation test,and a response surface method was used to obtain the optimal ballast breakage parameters.Lastly,the results of a direct shear test were compared with the simulation results to verify the correctness of the parameters and to study the shear resistance of the ballast aggregates.The results showed that for ballast particles with sizes of 22.4–63.0 mm,the characteristic stresses of compression and shear were not significantly affected by the size of the particles,but were greatly affected by their shape.In particular,long particles were more likely to break.During the direct shear test,the cumulative ballast breakage ratio gradually increased to 13.97%.The optimal breakage parameters of the ballast determined by this approach have high application value in the management of ballasted tracks.展开更多
基金The present work was supported by the National Natural Science Foundation of China(No.52008395).
文摘The unsupported sleeper can change the load characteristics of ballast particles and thus affect the dynamic stability of a ballasted bed.In this work,a laboratory test was constructed on a ballasted track containing unsupported sleepers.The ballasted track was excited by a wheelset,and the influence of unsupported sleepers on the dynamic stability of a ballasted bed was studied.The results show that the main frequency of the sleeper vibration appeared at 670 Hz,and the first-order rigid vibration mode at the frequency of 101 Hz had a significant effect on the condition without the unsupported sleeper.When the sleepers were continuously unsupported,the vibration damping effect of ballasted bed within the frequency range of 0–450 Hz was better than that at higher frequencies.Within the frequency range of 70–250 Hz,the vibration damping effect of the ballasted bed with unsupported sleepers was better than that without the unsupported sleeper.Owing to the excitation from the wheelset impact,the lateral resistance of the ballasted bed with unsupported sleepers whose hanging heights were 30,60,and 90 mm increased by 37.43%,12.25%,and 18.23%,respectively,while the lateral resistance of the ballasted bed without the unsupported sleeper remained basically unchanged.The unsupported sleeper could increase the difference in the quality of the ballasted bed between two adjacent sleepers.In addition,test results show that the hanging height of the unsupported sleeper had little effect on the lateral resistance of a ballasted bed without external excitation,but had an obvious effect on the rate of change of the lateral resistance of a ballasted bed and the acceleration amplitude of the sleeper vibration under the wheelset impact.
基金supported by the National Natural Science Foundation of China(Grant Nos.U19A20111 and 42130719)the State Key Laboratory of Geo-hazard Prevention and Geo-environment Protection Independent Research Project(Grant No.SKLGP2017Z001)。
文摘Since the classical element model cannot describe the nonlinear characteristics of rock during the entire compressive creep process,nonlinear elements and creep damage are generally introduced in the model to resolve this issue.However,several previous studies have reckoned that creep damage in rock only occurs in the accelerated creep stage and is only described by the Weibull distribution.Nevertheless,the creep damage mechanism of rocks is still not clearly understood.In this study,a reasonable representation of the damage variables of solid materials is presented.Specifically,based on the Gurson damage model,the damage state functions reflecting the constant creep stage and accelerated creep stage of rock are established.Further,the one-dimensional and three-dimensional creep damage constitutive equations of rock are derived by modifying the Nishihara model.Finally,the creep-acoustic emission tests of phyllite under different confining pressures are conducted to examine the creep damage characteristics of phyllite.And the proposed constitutive model is verified by analyzing the results of creep tests performed on saturated phyllite.Overall,this study reveals the relationship between the creep characteristics of rocks and the corresponding damage evolution pattern,which bridges the gap between the traditional theory and the quantitative analysis of rock creep and its damage pattern.
基金supported by the National Natural Science Foundation of China(Grant Nos.42272338,41827807 and 41902275)Shanghai Sailing Program(Grant No.18YF1424400)+7 种基金Joint Fund for Basic Research of High-speed Railway of National Natural Science Foundation of China,China Railway Corporation(U1934212)China State Railway Group Co.,Ltd.(P2019G038)Department of Transportation of Zhejiang Province(202213)China Railway First Survey and Design Institute Group Co.,Ltd.(19-21-1,2022KY53ZD(CYH)-10)China Railway Tunnel Group Co.,Ltd.(CZ02-02-08)PowChina Hebei Transportation Highway Investment Development Co.,Ltd.(TH-201908)Sichuan Railway Investment Group Co.,Ltd.(SRIG2019GG0004)The Science and Technology major program of Guizhou Province[2018]3011.
文摘Discontinuity is critical for strength,deformability,and permeability of rock mass.Set information is one of the essential discontinuity characteristics and is usually accessed by orientation grouping.Traditional methods of identifying optimal discontinuity set numbers are usually achieved by clustering validity indexes,which mainly relies on the aggregation and dispersion of clusters and leads to the inaccuracy and instability of evaluation.This paper proposes a new method of Fisher mixed evaluation(FME)to identify optimal group numbers of rock mass discontinuity orientation.In FME,orientation distribution is regarded as the superposition of Fisher mixed distributions.Optimal grouping results are identified by considering the fitting accuracy of Fisher mixed distributions,the probability monopoly and central location significance of independent Fisher centers.A Halley-Expectation-Maximization(EM)algorithm is derived to achieve an automatic fitting of Fisher mixed distribution.Three real rock discontinuity models combined with three orientation clustering algorithms are adopted for discontinuity grouping.Four clustering validity indexes are used to automatically identify optimal group numbers for comparison.The results show that FME is more accurate and robust than the other clustering validity indexes in optimal discontinuity group number identification for different rock models and orientation clustering algorithms.
基金supported by the National Natural Science Foundation of China(No.52008395).
文摘During the service lives of ballasted tracks,the ballast experiences degradation,such as breakage and fragmentation,which reduces the stability of the tracks.Ballast breakage is directly related to the shapes,sizes,and stress states of particles.The key to solving this problem is to determine the breakage parameters of railway ballast.In this study,through uniaxial compression and uniaxial shear tests,the factors associated with ballast breakage for a simple stress state were obtained.Then,a refined discrete element model of railway ballast was established.The Box-Behnken method was used to design a simulation test,and a response surface method was used to obtain the optimal ballast breakage parameters.Lastly,the results of a direct shear test were compared with the simulation results to verify the correctness of the parameters and to study the shear resistance of the ballast aggregates.The results showed that for ballast particles with sizes of 22.4–63.0 mm,the characteristic stresses of compression and shear were not significantly affected by the size of the particles,but were greatly affected by their shape.In particular,long particles were more likely to break.During the direct shear test,the cumulative ballast breakage ratio gradually increased to 13.97%.The optimal breakage parameters of the ballast determined by this approach have high application value in the management of ballasted tracks.