Accurate forecasting of changes in stock market indices can provide financial managers and individual investors with strategically valuable information.However,predicting the closing prices of stock indices remains a ...Accurate forecasting of changes in stock market indices can provide financial managers and individual investors with strategically valuable information.However,predicting the closing prices of stock indices remains a challenging task because stock price movements are characterized by high volatility and nonlinearity.This paper proposes a novel condensed polynomial neural network(CPNN)for the task of forecasting stock closing price indices.We developed a model that uses partial descriptions(PDs)and is limited to only two layers for the PNN architecture.The outputs of these PDs along with the original features are fed to a single output neuron,and the synaptic weight values and biases of the CPNN are optimized by a genetic algorithm.The proposed model was evaluated by predicting the next day’s closing price of five fast-growing stock indices:the BSE,DJIA,NASDAQ,FTSE,and TAIEX.In comparative testing,the proposed model proved its ability to provide closing price predictions with superior accuracy.Further,the Deibold-Mariano test justified the statistical significance of the model,establishing that this approach can be adopted as a competent financial forecasting tool.展开更多
Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selecti...Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selection and the need for more hidden neurons adversely influence network usability.Further,choosing the optimal number of hidden nodes for a network usually requires intensive human intervention,which may lead to an ill-conditioned situation.In this context,chemical reaction optimization(CRO)is a meta-heuristic paradigm with increased success in a large number of application areas.It is characterized by faster convergence capability and requires fewer tunable parameters.This study develops a learning framework combining the advantages of ELM and CRO,called extreme learning with chemical reaction optimization(ELCRO).ELCRO simultaneously optimizes the weight and bias vector and number of hidden neurons of a single layer feed-forward neural network without compromising prediction accuracy.We evaluate its performance by predicting the daily volatility and closing prices of BSE indices.Additionally,its performance is compared with three other similarly developed models—ELM based on particle swarm optimization,genetic algorithm,and gradient descent—and find the performance of the proposed algorithm superior.Wilcoxon signed-rank and Diebold–Mariano tests are then conducted to verify the statistical significance of the proposed model.Hence,this model can be used as a promising tool for financial forecasting.展开更多
Accurate prediction of stock market behavior is a challenging issue for financial forecasting.Artificial neural networks,such as multilayer perceptron have been established as better approximation and classification m...Accurate prediction of stock market behavior is a challenging issue for financial forecasting.Artificial neural networks,such as multilayer perceptron have been established as better approximation and classification models for this domain.This study proposes a chemical reaction optimization(CRO)based neuro-fuzzy network model for prediction of stock indices.The input vectors to the model are fuzzified by applying a Gaussian membership function,and each input is associated with a degree of membership to different classes.A multilayer perceptron with one hidden layer is used as the base model and CRO is used to the optimal weights and biases of this model.CRO was chosen because it requires fewer control parameters and has a faster convergence rate.Five statistical parameters are used to evaluate the performance of the model,and the model is validated by forecasting the daily closing indices for five major stock markets.The performance of the proposed model is compared with four state-of-art models that are trained similarly and was found to be superior.We conducted the Deibold-Mariano test to check the statistical significance of the proposed model,and it was found to be significant.This model can be used as a promising tool for financial forecasting.展开更多
This paper studies the thermal-diffusion and diffusion thermo-effects in the hydro-magnetic unsteady flow by a mixed convection boundary layer past an imperme- able vertical stretching sheet in a porous medium in the ...This paper studies the thermal-diffusion and diffusion thermo-effects in the hydro-magnetic unsteady flow by a mixed convection boundary layer past an imperme- able vertical stretching sheet in a porous medium in the presence of chemical reaction. The velocity of t^he stretching surface, the surface temperature, and the concentration are assumed to vary linearly with the distance along the surface. The governing partial differential equations are transformed into self-similar unsteady equations using similarity transformations .and solved numerically by the Runge-Kutta fourth order scheme in as- sociation with the shooting method for the whole transient domain from the initial state to the final steady state flow. Numerical results for the velocity, the temperature, the concentration, the skin friction, and the Nusselt and Sherwood numbers are shown graph- ically for various flow parameters. The results reveal that there is a smooth transition of flow from unsteady state to the final steady state. A special case of our results is in good agreement with an earlier published work.展开更多
Accurate classification of cardiac arrhythmias is a crucial task because of the non-stationary nature of electrocardiogram(ECG)signals.In a life-threatening situation,an automated system is necessary for early detecti...Accurate classification of cardiac arrhythmias is a crucial task because of the non-stationary nature of electrocardiogram(ECG)signals.In a life-threatening situation,an automated system is necessary for early detection of beat abnormalities in order to reduce the mortality rate.In this paper,we propose an automatic classification system of ECG beats based on the multi-domain features derived from the ECG signals.The experimental study was evaluated on ECG signals obtained from the MIT-BIH Arrhythmia Database.The feature set comprises eight empirical mode decomposition(EMD)based features,three features from variational mode decomposition(VMD)and four features from RR intervals.In total,15 features are ranked according to a ranker search approach and then used as input to the support vector machine(SVM)and C4.5 decision tree classifiers for classifying six types of arrhythmia beats.The proposed method achieved best result in C4.5 decision tree classifier with an accuracy of 98.89%compared to cubic-SVM classifier which achieved an accuracy of 95.35%only.Besides accuracy measures,all other parameters such as sensitivity(Se),specificity(Sp)and precision rates of 95.68%,99.28%and 95.8%was achieved better in C4.5 classifier.Also the computational time of 0.65 s with an error rate of 0.11 was achieved which is very less compared to SVM.The multi-domain based features with decision tree classifier obtained the best results in classifying cardiac arrhythmias hence the system could be used efficiently in clinical practices.展开更多
Support Vector Regression (SVR) has already been proved to be one of the mostreferred and used machine learning technique in various fields. In this study, wehave addressed a predictive-cum-prescriptive analysis for f...Support Vector Regression (SVR) has already been proved to be one of the mostreferred and used machine learning technique in various fields. In this study, wehave addressed a predictive-cum-prescriptive analysis for finalizing fundallocations by the Government at center to the schemes under Central Plan andto the schemes under States and Union Territories Plan, with a goal to maximizeGross Value Added (GVA) at factor cost. Here, we have proposed a hybridmachine learning model comprising of OFS (Orthogonal Forward Selection),TLBO (Teaching Learning Based Optimization) and SVR for the prediction ofGVA at factor cost. In this model, referred as OFS–TLBO–SVR hybrid model,SVR is at the core of prediction mechanism, OFS is for identifying the relevantfeatures, and TLBO is to support in optimizing the free parameters of SVR andagain TLBO is used for optimizing the governable attributes of data.展开更多
文摘Accurate forecasting of changes in stock market indices can provide financial managers and individual investors with strategically valuable information.However,predicting the closing prices of stock indices remains a challenging task because stock price movements are characterized by high volatility and nonlinearity.This paper proposes a novel condensed polynomial neural network(CPNN)for the task of forecasting stock closing price indices.We developed a model that uses partial descriptions(PDs)and is limited to only two layers for the PNN architecture.The outputs of these PDs along with the original features are fed to a single output neuron,and the synaptic weight values and biases of the CPNN are optimized by a genetic algorithm.The proposed model was evaluated by predicting the next day’s closing price of five fast-growing stock indices:the BSE,DJIA,NASDAQ,FTSE,and TAIEX.In comparative testing,the proposed model proved its ability to provide closing price predictions with superior accuracy.Further,the Deibold-Mariano test justified the statistical significance of the model,establishing that this approach can be adopted as a competent financial forecasting tool.
文摘Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selection and the need for more hidden neurons adversely influence network usability.Further,choosing the optimal number of hidden nodes for a network usually requires intensive human intervention,which may lead to an ill-conditioned situation.In this context,chemical reaction optimization(CRO)is a meta-heuristic paradigm with increased success in a large number of application areas.It is characterized by faster convergence capability and requires fewer tunable parameters.This study develops a learning framework combining the advantages of ELM and CRO,called extreme learning with chemical reaction optimization(ELCRO).ELCRO simultaneously optimizes the weight and bias vector and number of hidden neurons of a single layer feed-forward neural network without compromising prediction accuracy.We evaluate its performance by predicting the daily volatility and closing prices of BSE indices.Additionally,its performance is compared with three other similarly developed models—ELM based on particle swarm optimization,genetic algorithm,and gradient descent—and find the performance of the proposed algorithm superior.Wilcoxon signed-rank and Diebold–Mariano tests are then conducted to verify the statistical significance of the proposed model.Hence,this model can be used as a promising tool for financial forecasting.
文摘Accurate prediction of stock market behavior is a challenging issue for financial forecasting.Artificial neural networks,such as multilayer perceptron have been established as better approximation and classification models for this domain.This study proposes a chemical reaction optimization(CRO)based neuro-fuzzy network model for prediction of stock indices.The input vectors to the model are fuzzified by applying a Gaussian membership function,and each input is associated with a degree of membership to different classes.A multilayer perceptron with one hidden layer is used as the base model and CRO is used to the optimal weights and biases of this model.CRO was chosen because it requires fewer control parameters and has a faster convergence rate.Five statistical parameters are used to evaluate the performance of the model,and the model is validated by forecasting the daily closing indices for five major stock markets.The performance of the proposed model is compared with four state-of-art models that are trained similarly and was found to be superior.We conducted the Deibold-Mariano test to check the statistical significance of the proposed model,and it was found to be significant.This model can be used as a promising tool for financial forecasting.
文摘This paper studies the thermal-diffusion and diffusion thermo-effects in the hydro-magnetic unsteady flow by a mixed convection boundary layer past an imperme- able vertical stretching sheet in a porous medium in the presence of chemical reaction. The velocity of t^he stretching surface, the surface temperature, and the concentration are assumed to vary linearly with the distance along the surface. The governing partial differential equations are transformed into self-similar unsteady equations using similarity transformations .and solved numerically by the Runge-Kutta fourth order scheme in as- sociation with the shooting method for the whole transient domain from the initial state to the final steady state flow. Numerical results for the velocity, the temperature, the concentration, the skin friction, and the Nusselt and Sherwood numbers are shown graph- ically for various flow parameters. The results reveal that there is a smooth transition of flow from unsteady state to the final steady state. A special case of our results is in good agreement with an earlier published work.
文摘Accurate classification of cardiac arrhythmias is a crucial task because of the non-stationary nature of electrocardiogram(ECG)signals.In a life-threatening situation,an automated system is necessary for early detection of beat abnormalities in order to reduce the mortality rate.In this paper,we propose an automatic classification system of ECG beats based on the multi-domain features derived from the ECG signals.The experimental study was evaluated on ECG signals obtained from the MIT-BIH Arrhythmia Database.The feature set comprises eight empirical mode decomposition(EMD)based features,three features from variational mode decomposition(VMD)and four features from RR intervals.In total,15 features are ranked according to a ranker search approach and then used as input to the support vector machine(SVM)and C4.5 decision tree classifiers for classifying six types of arrhythmia beats.The proposed method achieved best result in C4.5 decision tree classifier with an accuracy of 98.89%compared to cubic-SVM classifier which achieved an accuracy of 95.35%only.Besides accuracy measures,all other parameters such as sensitivity(Se),specificity(Sp)and precision rates of 95.68%,99.28%and 95.8%was achieved better in C4.5 classifier.Also the computational time of 0.65 s with an error rate of 0.11 was achieved which is very less compared to SVM.The multi-domain based features with decision tree classifier obtained the best results in classifying cardiac arrhythmias hence the system could be used efficiently in clinical practices.
文摘Support Vector Regression (SVR) has already been proved to be one of the mostreferred and used machine learning technique in various fields. In this study, wehave addressed a predictive-cum-prescriptive analysis for finalizing fundallocations by the Government at center to the schemes under Central Plan andto the schemes under States and Union Territories Plan, with a goal to maximizeGross Value Added (GVA) at factor cost. Here, we have proposed a hybridmachine learning model comprising of OFS (Orthogonal Forward Selection),TLBO (Teaching Learning Based Optimization) and SVR for the prediction ofGVA at factor cost. In this model, referred as OFS–TLBO–SVR hybrid model,SVR is at the core of prediction mechanism, OFS is for identifying the relevantfeatures, and TLBO is to support in optimizing the free parameters of SVR andagain TLBO is used for optimizing the governable attributes of data.