Percussive drilling shows excellent potential for promoting the rate of penetration(ROP)in drilling hard formations.Polycrystalline diamond compact(PDC)bits account for most of the footage drilled in the oil and gas f...Percussive drilling shows excellent potential for promoting the rate of penetration(ROP)in drilling hard formations.Polycrystalline diamond compact(PDC)bits account for most of the footage drilled in the oil and gas fields.To reveal the rock failure mechanisms under the impact load by PDC bits,a series of drop tests with a single PDC cutter were conducted to four kinds of rocks at different back rake angles,drop heights,drop mass,and drop times.Then the morphology characteristics of the craters were obtained and quantified by using a three-dimensional profilometer.The fracture micrographs can be observed by using scanning electron microscope(SEM).The distribution and propagation process of subsurface cracks were captured in rock-like silica glass by a high-speed photography system.The results can indicate that percussive drilling has a higher efficiency and ROP when the rock fractures in brittle mode.The failure mode of rock is related with the type of rock,the impact speed,and the back rake angle of the cutter.Both the penetration depth and fragmentation volume get the maximum values at a back rake angle of about 45°.Increasing the weight and speed of falling hammer is beneficial to improving the rock breaking effects and efficiency.The subsurface cracks under the impact load by a single PDC cutter is shaped like a clamshell,and its size is much larger than the crater volume.These findings can help to shed light on the rock failure mechanisms under the impact of load by a single PDC cutter and provide a theoretical explanation for better field application of percussive drilling.展开更多
Based on micro-CT scanning experiments, three-dimensional digital cores of tight sandstones were established to quantitatively evaluate pore-scale anisotropy and pore-distribution heterogeneity. The quartet structure ...Based on micro-CT scanning experiments, three-dimensional digital cores of tight sandstones were established to quantitatively evaluate pore-scale anisotropy and pore-distribution heterogeneity. The quartet structure generation set method was used to generate three-dimensional anisotropic, heterogeneous porous media models. A multi-relaxation-time lattice Boltzmann model was applied to analyze relationships of permeability with pore-scale anisotropy and pore distribution heterogeneity, and the microscopic influence mechanism was also investigated. The tight sandstones are of complex pore morphology, strong anisotropy and pore distribution heterogeneity, while anisotropy factor has obvious directivity. The obvious anisotropy influences the orientation of long axis of pores and fluid flow path, making tortuosity smaller and flowing energy loss less in the direction with the greater anisotropy factor. The strong correlation of tortuosity and anisotropy is the inherent reason of anisotropy acting on permeability. The influence of pore distribution heterogeneity on permeability is the combined effects of specific surface area and tortuosity, while the product of specific surface area and tortuosity shows significantly negative correlation with heterogeneity. The stronger the pore distribution heterogeneity, the smaller the product and the greater the permeability. In addition, the permeability and tortuosity of complex porous media satisfy a power relation with a high fitting precision, which can be applied for approximate estimation of core permeability.展开更多
Venezuela is the 5th biggest oil export country in the world, and a member of OPEC. With rich reserves of crude oil, its average daily oil output reached 3.1 million barrels in 2004. Venezuela's state oil company Pet...Venezuela is the 5th biggest oil export country in the world, and a member of OPEC. With rich reserves of crude oil, its average daily oil output reached 3.1 million barrels in 2004. Venezuela's state oil company Petroleos de Venezuela SA (PDVSA), the biggest oil company in South America, launched its China representative office in Beijing on 22 Aug. Ma Fucai, Vice Director of the State Energy Leading Group Office, and Rafael Ramrez, Minister of the Energy and Oil Ministry of Republic of Venezuela, attended the opening ceremony. Ramrez is the president of PDVSA at the same time. He said the opening of PDVSA China Representative Office is a sign reflecting a new start-point for the energy cooperation between China and Venezuela. Cooperation between oil companies from both countries will be strengthened as well.展开更多
There are a lot of researches on qualitative aseismatic measures for buried gas pipeline crossing movable faults.But a few of them are quantitative,especially in the size and shape of the trench.The paper first establ...There are a lot of researches on qualitative aseismatic measures for buried gas pipeline crossing movable faults.But a few of them are quantitative,especially in the size and shape of the trench.The paper first established the finite element model of the strain of buried pipeline crossing a fault which effected by the size and shape of the trench.And it obtained new soil spring stiffness which considered different buried depth,bottom width of trench,trench slope and elastic modulus of soil.The mechanical analysis model of pipeline is established,and the limit state equation of pipeline is fitted.The reliability and sensitivity of the natural gas pipeline under fault action are analysed by a Monte Carlo method,and the error and accuracy are verified.When the pipeline is under tension,the sensitivity from large to small is buried depth,sand friction angle,pipe diameter,pipeline displacement,trench bottom width,trench depth,clay cohesion,trench slope and clay friction angle;when the pipeline is under pressure,the trench depth and clay cohesion have great influence.The findings of this study provide a reference for pipeline design and safety evaluation under fault action.展开更多
基金the financial support of the China Postdoctoral Science Foundation(Grant No.2021TQ0365).
文摘Percussive drilling shows excellent potential for promoting the rate of penetration(ROP)in drilling hard formations.Polycrystalline diamond compact(PDC)bits account for most of the footage drilled in the oil and gas fields.To reveal the rock failure mechanisms under the impact load by PDC bits,a series of drop tests with a single PDC cutter were conducted to four kinds of rocks at different back rake angles,drop heights,drop mass,and drop times.Then the morphology characteristics of the craters were obtained and quantified by using a three-dimensional profilometer.The fracture micrographs can be observed by using scanning electron microscope(SEM).The distribution and propagation process of subsurface cracks were captured in rock-like silica glass by a high-speed photography system.The results can indicate that percussive drilling has a higher efficiency and ROP when the rock fractures in brittle mode.The failure mode of rock is related with the type of rock,the impact speed,and the back rake angle of the cutter.Both the penetration depth and fragmentation volume get the maximum values at a back rake angle of about 45°.Increasing the weight and speed of falling hammer is beneficial to improving the rock breaking effects and efficiency.The subsurface cracks under the impact load by a single PDC cutter is shaped like a clamshell,and its size is much larger than the crater volume.These findings can help to shed light on the rock failure mechanisms under the impact of load by a single PDC cutter and provide a theoretical explanation for better field application of percussive drilling.
基金Supported by National Natural Science Foundation of China(U1562217)National Basic Research Program of China(2015CB250900)
文摘Based on micro-CT scanning experiments, three-dimensional digital cores of tight sandstones were established to quantitatively evaluate pore-scale anisotropy and pore-distribution heterogeneity. The quartet structure generation set method was used to generate three-dimensional anisotropic, heterogeneous porous media models. A multi-relaxation-time lattice Boltzmann model was applied to analyze relationships of permeability with pore-scale anisotropy and pore distribution heterogeneity, and the microscopic influence mechanism was also investigated. The tight sandstones are of complex pore morphology, strong anisotropy and pore distribution heterogeneity, while anisotropy factor has obvious directivity. The obvious anisotropy influences the orientation of long axis of pores and fluid flow path, making tortuosity smaller and flowing energy loss less in the direction with the greater anisotropy factor. The strong correlation of tortuosity and anisotropy is the inherent reason of anisotropy acting on permeability. The influence of pore distribution heterogeneity on permeability is the combined effects of specific surface area and tortuosity, while the product of specific surface area and tortuosity shows significantly negative correlation with heterogeneity. The stronger the pore distribution heterogeneity, the smaller the product and the greater the permeability. In addition, the permeability and tortuosity of complex porous media satisfy a power relation with a high fitting precision, which can be applied for approximate estimation of core permeability.
文摘Venezuela is the 5th biggest oil export country in the world, and a member of OPEC. With rich reserves of crude oil, its average daily oil output reached 3.1 million barrels in 2004. Venezuela's state oil company Petroleos de Venezuela SA (PDVSA), the biggest oil company in South America, launched its China representative office in Beijing on 22 Aug. Ma Fucai, Vice Director of the State Energy Leading Group Office, and Rafael Ramrez, Minister of the Energy and Oil Ministry of Republic of Venezuela, attended the opening ceremony. Ramrez is the president of PDVSA at the same time. He said the opening of PDVSA China Representative Office is a sign reflecting a new start-point for the energy cooperation between China and Venezuela. Cooperation between oil companies from both countries will be strengthened as well.
基金financial support by China Petroleum Science&Technology Innovation Fund(2017D-50070606):Reliability research of large diameter and high steel natural gas pipeline under fault action。
文摘There are a lot of researches on qualitative aseismatic measures for buried gas pipeline crossing movable faults.But a few of them are quantitative,especially in the size and shape of the trench.The paper first established the finite element model of the strain of buried pipeline crossing a fault which effected by the size and shape of the trench.And it obtained new soil spring stiffness which considered different buried depth,bottom width of trench,trench slope and elastic modulus of soil.The mechanical analysis model of pipeline is established,and the limit state equation of pipeline is fitted.The reliability and sensitivity of the natural gas pipeline under fault action are analysed by a Monte Carlo method,and the error and accuracy are verified.When the pipeline is under tension,the sensitivity from large to small is buried depth,sand friction angle,pipe diameter,pipeline displacement,trench bottom width,trench depth,clay cohesion,trench slope and clay friction angle;when the pipeline is under pressure,the trench depth and clay cohesion have great influence.The findings of this study provide a reference for pipeline design and safety evaluation under fault action.