期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of bioactive hydrogels combined with dental pulp stem cells for the repair of large gap peripheral nerve injuries 被引量:11
1
作者 Lihua Luo Yan He +11 位作者 Ling Jin Yanni Zhang Fernando P.Guastaldi Abdullkhaleg A.Albashari Fengting Hu Xiaoyan Wang Lei Wang Jian Xiao Lingli Li Jianming Wang Akon Higuchi Qingsong Ye 《Bioactive Materials》 SCIE 2021年第3期638-654,共17页
Due to the limitations in autogenous nerve grafting or Schwann cell transplantation,large gap peripheral nerve injuries require a bridging strategy supported by nerve conduit.Cell based therapies provide a novel treat... Due to the limitations in autogenous nerve grafting or Schwann cell transplantation,large gap peripheral nerve injuries require a bridging strategy supported by nerve conduit.Cell based therapies provide a novel treatment for peripheral nerve injuries.In this study,we first experimented an optimal scaffold material synthesis protocol,from where we selected the 10%GFD formula(10%GelMA hydrogel,recombinant human basic fibroblast growth factor and dental pulp stem cells(DPSCs))to fill a cellulose/soy protein isolate composite membrane(CSM)tube to construct a third generation of nerve regeneration conduit,CSM-GFD.Then this CSM-GFD conduit was applied to repair a 15-mm long defect of sciatic nerve in a rat model.After 12 week post implant surgery,at histologic level,we found CSM-GFD conduit could regenerate nerve tissue like neuron and Schwann like nerve cells and myelinated nerve fibers.At physical level,CSM-GFD achieved functional recovery assessed by a sciatic functional index study.In both levels,CSM-GFD performed like what gold standard,the nerve autograft,could do.Further,we unveiled that almost all newly formed nerve tissue at defect site was originated from the direct differentiation of exogeneous DPSCs in CSM-GFD.In conclusion,we claimed that this third-generation nerve regeneration conduit,CSM-GFD,could be a promising tissue engineering approach to replace the conventional nerve autograft to treat the large gap defect in peripheral nerve injuries. 展开更多
关键词 Dental pulp stem cells Human basic fibroblast growth factor Gelatin methacrylate Large gap Peripheral nerve injuries Nerve graft
原文传递
Corrigendum to‘Application of bioactive hydrogels combined with dental pulp stem cells for the repair of large gap peripheral nerve injuries’[Bioactive Mater.6(3)(2021)638-654]
2
作者 Lihua Luo Yan He +11 位作者 Ling Jin Yanni Zhang Fernando P.Guastaldi Abdullkhaleg A.Albashari Fengting Hu Xiaoyan Wang Lei Wang Jian Xiao Lingli Li Jianming Wang Akon Higuchi Qingsong Ye 《Bioactive Materials》 SCIE 2022年第1期2-2,共1页
The authors regret that the author(A.H.)was removed as an agreement could not be reached between the two affiliations of the author.The authors would like to apologise for any inconvenience caused.
关键词 INJURIES removed REPAIR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部