期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Highly reliable and selective ethanol sensor based on α-Fe2O3 nanorhombs working in realistic environments 被引量:1
1
作者 Wenjun Yan Xiaomin Zeng +3 位作者 Huan Liu Chunwei Guo Min Ling Houpan Zhou 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第10期483-489,共7页
A highly reliable and selective ethanol gas sensor working in realistic environments based on alpha-Fe2O3(α-Fe2O3)nanorhombs is developed. The sensor is fabricated by integrating α-Fe2O3 nanorhombs onto a low power ... A highly reliable and selective ethanol gas sensor working in realistic environments based on alpha-Fe2O3(α-Fe2O3)nanorhombs is developed. The sensor is fabricated by integrating α-Fe2O3 nanorhombs onto a low power microheater based on micro-electro-mechanical systems(MEMS) technology. The α-Fe2O3 nanorhombs, prepared via a solvothermal method, is characterized by transmission electron microscopy(TEM), Raman spectroscopy, x-ray diffraction(XRD), and x-ray photoelectron spectroscopy(XPS). The sensing performances of the α-Fe2O3 sensor to various toxic gases are investigated. The optimum sensing temperature is found to be about 280℃. The sensor shows excellent selectivity to ethanol.For various ethanol concentrations(1 ppm-20 ppm), the response and recovery times are around 3 s and 15 s at the working temperature of 280℃, respectively. Specifically, the α-Fe2O3 sensor exhibits a response shift less than 6% to ethanol at280℃ when the relative humidity(RH) increases from 30% to 70%. The good tolerance to humidity variation makes the sensor suitable for reliable applications in Internet of Things(IoT) in realistic environments. In addition, the sensor shows great long-term repeatability and stability towards ethanol. A possible gas sensing mechanism is proposed. 展开更多
关键词 Α-FE2O3 ETHANOL sensor chemi-resistive in REALISTIC environment micro-electro-mechanical systems(MEMS)
下载PDF
Evapotranspiration partitioning using an optimality-based ecohydrological model in a semiarid shrubland 被引量:1
2
作者 Lajiao Chen Liying Sun +4 位作者 Weijiang Liu Lizhe Wang Hui Wu A-Xing Zhu Yiqi Luo 《International Journal of Digital Earth》 SCIE EI 2019年第12期1423-1440,共18页
Partitioning of evapotranspiration(ET)into biological component transpiration(T)and non-biological component evaporation(E)is crucial in understanding the impact of environmental change on ecosystems and water resourc... Partitioning of evapotranspiration(ET)into biological component transpiration(T)and non-biological component evaporation(E)is crucial in understanding the impact of environmental change on ecosystems and water resources.However,direct measurement of transpiration is still challenging.In this paper,an optimality-based ecohydrological model named Vegetation Optimality Model(VOM)is applied for ET partitioning.The results show that VOM model can reasonably simulate ET and ET components in a semiarid shrubland.Overall,the ratio of transpiration to evapotranspiration is 49%for the whole period.Evaporation and plant transpiration mainly occur in monsoon following the precipitation events.Evaporation responds immediately to precipitation events,while transpiration shows a lagged response of several days to those events.Different years demonstrate different patterns of T/ET ratio dynamic in monsoon.Some of the years show a low T/ET ratio at the beginning of monsoon and slowly increased T/ET ratio.Other years show a high level of T/ET ratio for the whole monsoon.We find out that spring precipitation,especially the size of the precipitation,has a significant influence on the T/ET ratio in monsoon. 展开更多
关键词 ET partitioning optimalitybased ecohydrological model VOM semiarid shrubland
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部