期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An artificial lateral line system using IPMC sensor arrays 被引量:2
1
作者 Ahmad T.Abdulsadda Xiaobo Tan 《International Journal of Smart and Nano Materials》 SCIE EI 2012年第3期226-242,共17页
Most fish and aquatic amphibians use the lateral line system,consisting of arrays of hair-like neuromasts,as an important sensory organ for prey/predator detection,communication,and navigation.In this paper a novel bi... Most fish and aquatic amphibians use the lateral line system,consisting of arrays of hair-like neuromasts,as an important sensory organ for prey/predator detection,communication,and navigation.In this paper a novel bio-inspired artificial lateral line system is proposed for underwater robots and vehicles by exploiting the inherent sensing capability of ionic polymer-metal composites(IPMCs).Analogous to its biological counterpart,the IPMC-based lateral line processes the sensor signals through a neural network.The effectiveness of the proposed lateral line is validated experimentally in the localization of a dipole source(vibrating sphere)underwater.In particular,as a proof of concept,a prototype with body length(BL)of 10 cm,comprising six millimeter-scale IPMC sensors,is constructed and tested.Experimental results have shown that the IPMC-based lateral line can localize the source from 1-2 BLs away,with a maximum localization error of 0.3 cm,when the data for training the neural network are collected from a grid of 2 cm by 2 cm lattices.The effect of the number of sensors on the localization accuracy has also been examined. 展开更多
关键词 ionic polymer-metal composite(IPMC) lateral line system neural networks flow sensing dipole source localization
原文传递
Investigation of Punch Resistance of the Allomyrira dichtoloma Beetle Forewing 被引量:3
2
作者 Ngoc San Ha Vinh Tung Le Nam Seo Goo 《Journal of Bionic Engineering》 SCIE EI CSCD 2018年第1期57-68,共12页
In this study, the punch resistance of the beetle forewing was investigated to address the ability of the forewing against the external force. The punch resistance of the forewing was measured for different sizes and ... In this study, the punch resistance of the beetle forewing was investigated to address the ability of the forewing against the external force. The punch resistance of the forewing was measured for different sizes and sexes of beetles using a conventional testing method in conjunction with the Digital Image Correlation (DIC) technique. The results showed that the maximum fracture load was measured around 23 N for the female beetle and around 20.2 N for the male beetle in the front-side punch test. Moreover, the fracture load in the front-side punch test was higher than that in the back-side punch test for both male and female beetles. This means that the beetle forewing plays a protection role against external loads. Furthermore, the puncture energy in the front-side punch test for the female beetle (6.91 m J) was a little higher than that for the male beetle (5.27 mJ). In addition, the DIC results revealed that the first crack occurred along the trachea line and the second crack then appeared in the direction that was perpendicular to the direction of the first crack. This study provides a com- prehensive understanding of the mechanical protection properties of the beetle forewing and offers a good lesson for studying lightweight bio-inspired composite material. 展开更多
关键词 beetle forewing punch test punch energy digital image correlation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部