The mobility and connective capabilities of unmanned aerial vehicles(UAVs)are becoming more and more important in defense,commercial,and research domains.However,their open communication makes UAVs susceptible toundes...The mobility and connective capabilities of unmanned aerial vehicles(UAVs)are becoming more and more important in defense,commercial,and research domains.However,their open communication makes UAVs susceptible toundesirablepassive attacks suchas eavesdroppingor jamming.Recently,the inefficiencyof traditional cryptography-based techniques has led to the addition of Physical Layer Security(PLS).This study focuses on the advanced PLS method for passive eavesdropping in UAV-aided vehicular environments,proposing a solution to complement the conventional cryptography approach.Initially,we present a performance analysis of first-order secrecy metrics in 6G-enabled UAV systems,namely hybrid outage probability(HOP)and secrecy outage probability(SOP)over 2×2 Nakagami-m channels.Later,we propose a novel technique for mitigating passive eavesdropping,which considers first-order secrecy metrics as an optimization problem and determines their lower and upper bounds.Finally,we conduct an analysis of bounded HOP and SOP using the interactive Nakagami-m channel,considering the multiple-input-multiple-output configuration of the UAV system.The findings indicate that 2×2 Nakagami-mis a suitable fadingmodel under constant velocity for trustworthy receivers and eavesdroppers.The results indicate that UAV mobility has some influence on an eavesdropper’s intrusion during line-of-sight-enabled communication and can play an important role in improving security against passive eavesdroppers.展开更多
This study presents a model to forecast the Indian summer monsoon rainfall(ISMR)(June-September)based on monthly and seasonal time scales. The ISMR time series data sets are classified into two parts for modeling ...This study presents a model to forecast the Indian summer monsoon rainfall(ISMR)(June-September)based on monthly and seasonal time scales. The ISMR time series data sets are classified into two parts for modeling purposes, viz.,(1) training data set(1871-1960), and(2) testing data set(1961-2014).Statistical analyzes reflect the dynamic nature of the ISMR, which couldn't be predicted efficiently by statistical and mathematical based models. Therefore, this study suggests the usage of three techniques,viz., fuzzy set, entropy and artificial neural network(ANN). Based on these techniques, a novel ISMR time series forecasting model is designed to deal with the dynamic nature of the ISMR. This model is verified and validated with training and testing data sets. Various statistical analyzes and comparison studies demonstrate the effectiveness of the proposed model.展开更多
基金funded by Taif University,Taif,Saudi Arabia,Project No.(TUDSPP-2024-139).
文摘The mobility and connective capabilities of unmanned aerial vehicles(UAVs)are becoming more and more important in defense,commercial,and research domains.However,their open communication makes UAVs susceptible toundesirablepassive attacks suchas eavesdroppingor jamming.Recently,the inefficiencyof traditional cryptography-based techniques has led to the addition of Physical Layer Security(PLS).This study focuses on the advanced PLS method for passive eavesdropping in UAV-aided vehicular environments,proposing a solution to complement the conventional cryptography approach.Initially,we present a performance analysis of first-order secrecy metrics in 6G-enabled UAV systems,namely hybrid outage probability(HOP)and secrecy outage probability(SOP)over 2×2 Nakagami-m channels.Later,we propose a novel technique for mitigating passive eavesdropping,which considers first-order secrecy metrics as an optimization problem and determines their lower and upper bounds.Finally,we conduct an analysis of bounded HOP and SOP using the interactive Nakagami-m channel,considering the multiple-input-multiple-output configuration of the UAV system.The findings indicate that 2×2 Nakagami-mis a suitable fadingmodel under constant velocity for trustworthy receivers and eavesdroppers.The results indicate that UAV mobility has some influence on an eavesdropper’s intrusion during line-of-sight-enabled communication and can play an important role in improving security against passive eavesdroppers.
基金supported by the Department of Science and Technology (DST)-SERB, Government of India, under Grant EEQ/ 2016/000021
文摘This study presents a model to forecast the Indian summer monsoon rainfall(ISMR)(June-September)based on monthly and seasonal time scales. The ISMR time series data sets are classified into two parts for modeling purposes, viz.,(1) training data set(1871-1960), and(2) testing data set(1961-2014).Statistical analyzes reflect the dynamic nature of the ISMR, which couldn't be predicted efficiently by statistical and mathematical based models. Therefore, this study suggests the usage of three techniques,viz., fuzzy set, entropy and artificial neural network(ANN). Based on these techniques, a novel ISMR time series forecasting model is designed to deal with the dynamic nature of the ISMR. This model is verified and validated with training and testing data sets. Various statistical analyzes and comparison studies demonstrate the effectiveness of the proposed model.