期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Internal failure of anode materials for lithium batteriesd——A critical review 被引量:9
1
作者 Xiangqi Meng Yaolin Xu +5 位作者 Hongbin Cao Xiao Lin Pengge Ning Yi Zhang Yaiza Gonzalez Garcia Zhi Sun 《Green Energy & Environment》 CSCD 2020年第1期22-36,共15页
Prevention of mechanical and finally electrochemical failures of lithium batteries is a critical aspect to be considered during their design and performance, especially for those with high specific capacities. Interna... Prevention of mechanical and finally electrochemical failures of lithium batteries is a critical aspect to be considered during their design and performance, especially for those with high specific capacities. Internal failure is observed as one of the most serious factors, including loss of electrode materials, structure deformation and dendrite growth. It usually incubates from atomic/molecular level and progressively aggravates along with lithiation. Understanding the internal failure is of great importance for developing solutions of failure prevention and advanced anode materials. In this research, different internal failure processes of anode materials for lithium batteries are discussed. The progress on observation technologies of the anode failure is further summarized in order to understand their mechanisms of internal failure. On top of them, this review aims to summarize innovative methods to investigate the anode failure mechanisms and to gain new insights to develop advanced and stable anodes for lithium batteries. 展开更多
关键词 Lithium battery Anode materials Internal failure
下载PDF
Prompt Electrodeposition of Ni Nanodots on Ni Foam to Construct a High-Performance Water-Splitting Electrode:Efficient, Scalable,and Recyclable 被引量:2
2
作者 Hongtao Yu Ting Quan +4 位作者 Shilin Mei Zdravko Kochovski Wei Huang Hong Meng Yan Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期79-91,共13页
In past decades,Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts for water splitting.With increasing de... In past decades,Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts for water splitting.With increasing demands for Ni worldwide,simplifying the fabrication process,increasing Ni recycling,and reducing waste are tangible sustainability goals.Here,binder-free,heteroatom-free,and recyclable Ni-based bifunctional catalytic electrodes were fabricated via a one-step quick electrodeposition method.Typically,active Ni nanodot(NiND)clusters are electrodeposited on Ni foam(NF)in Ni(NO3)2 acetonitrile solution.After drying in air,NiO/NiND composites are obtained,leading to a binder-free and heteroatom-free NiO/NiNDs@NF catalytic electrode.The electrode shows high efficiency and long-term stability for catalyzing hydrogen and oxygen evolution reactions at low overpotentials(10ηHER= 119 mV and 50ηOER=360 mV)and can promote water catalysis at 1.70 V@ 10mA cm-2.More importantly,the recovery of raw materials(NF and Ni(NO3)2)is quite easy because of the solubility of NiO/NiNDs composites in acid solution for recycling the electrodes.Additionally,a large-sized(S^70 cm2)NiO/NiNDs@NF catalytic electrode with high durability has also been constructed.This method provides a simple and fast technology to construct high-performance,low-cost,and environmentally friendly Ni-based bifunctional electrocatalytic electrodes for water splitting. 展开更多
关键词 Electrodeposition NI NANODOTS BIFUNCTIONAL catalysts Water splitting Large-size
下载PDF
Enhanced Catalytic Activity of Gold@Polydopamine Nanoreactors with Multi-compartment Structure Under NIR Irradiation
3
作者 Shilin Mei Zdravko Kochovski +6 位作者 Rafael Roa Sasa Gu Xiaohui Xu Hongtao Yu Joachim Dzubiella Matthias Ballauff Yan Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期469-484,共16页
Photothermal conversion(PTC)nanostructures have great potential for applications in many fields,and therefore,they have attracted tremendous attention.However,the construction of a PTC nanoreactor with multi-compartme... Photothermal conversion(PTC)nanostructures have great potential for applications in many fields,and therefore,they have attracted tremendous attention.However,the construction of a PTC nanoreactor with multi-compartment structure to achieve the combination of unique chemical properties and structural feature is still challenging due to the synthetic difficulties.Herein,we designed and synthesized a catalytically active,PTC gold(Au)@polydopamine(PDA)nanoreactor driven by infrared irradiation using assembled PS-b-P2VP nanosphere as soft template.The particles exhibit multi-compartment structure which is revealed by 3D electron tomography characterization technique.They feature permeable shells with tunable shell thickness.Full kinetics for the reduction reaction of 4-nitrophenol has been investigated using these particles as nanoreactors and compared with other reported systems.Notably,a remarkable acceleration of the catalytic reaction upon near-infrared irradiation is demonstrated,which reveals for the first time the importance of the synergistic effect of photothermal conversion and complex inner structure to the kinetics of the catalytic reduction.The ease of synthesis and fresh insights into catalysis will promote a new platform for novel nanoreactor studies. 展开更多
关键词 Gold@polydopamine 3D tomography NANOREACTOR Catalysis PHOTOTHERMAL conversion
下载PDF
The Significance of Solutions Obtained from Ill-Posed Systems of Linear Equations Constituted by Synchrotron Radiation Based Anomalous Small-Angle X-Ray Scattering
4
作者 Günter Johannes Goerigk 《Advances in Linear Algebra & Matrix Theory》 2018年第1期64-86,共23页
Synchrotron radiation based experimental techniques known as Anomalous Small-Angle X-ray Scattering (ASAXS) provide deep insight into the nanostructure of uncountable material systems in condensed matter research i.e.... Synchrotron radiation based experimental techniques known as Anomalous Small-Angle X-ray Scattering (ASAXS) provide deep insight into the nanostructure of uncountable material systems in condensed matter research i.e. solid state physics, chemistry, engineering and life sciences thereby rendering the origin of the macroscopic functionalization of the various materials via correlation to its structural architecture on a nanometer length scale. The techniques constitute a system of linear equations, which can be treated by matrix theory. The study aims to analyze the significance of the solutions of the stated matrix equations by use of the so-called condition numbers first introduced by A. Turing, J. von Neumann and H. Goldstine. Special attention was given for the comparison with direct methods i.e. the Gaussian elimination method. The mathematical roots of ill-posed ASAXS equations preventing matrix inversion have been identified. In the framework of the theory of von Neumann and Goldstine the inversion of certain matrices constituted by ASAXS gradually becomes impossible caused by non-definiteness. In Turing’s theory which starts from more general prerequisites, the principal minors of the same matrices approach singularity thereby imposing large errors on inversion. In conclusion both theories recommend for extremely ill-posed ASAXS problems avoiding inversion and the use of direct methods for instance Gaussian elimination. 展开更多
关键词 Matrix Inversion Condition NUMBERS LU-Decomposition Gaussian Elimination SYNCHROTRON Radiation ANOMALOUS SMALL-ANGLE X-Ray Scattering
下载PDF
The Solution of the Eigenvector Problem in Synchrotron Radiation Based Anomalous Small-Angle X-Ray Scattering
5
作者 Guenter Johannes Goerigk 《Advances in Linear Algebra & Matrix Theory》 2013年第4期59-68,共10页
In the last three decades Synchrotron radiation became an indispensable experimental tool for chemical and structural analysis of nano-scaled properties in solid state physics, chemistry, materials science and life sc... In the last three decades Synchrotron radiation became an indispensable experimental tool for chemical and structural analysis of nano-scaled properties in solid state physics, chemistry, materials science and life science thereby rendering the explanation of the macroscopic behavior of the materials and systems under investigation. Especially the techniques known as Anomalous Small-Angle X-ray Scattering provide deep insight into the materials structural architecture according to the different chemical components on lengths scales starting just above the atomic scale (≈1 nm) up to several 100 nm. The techniques sensitivity to the different chemical components makes use of the energy dependence of the atomic scattering factors, which are different for all chemical elements, thereby disentangling the nanostructure of the different chemical components by the signature of the elemental X-ray absorption edges i.e. by employing synchrotron radiation. The paper wants to focus on the application of an algorithm from linear algebra in the field of synchrotron radiation. It provides a closer look to the algebraic prerequisites, which govern the system of linear equations established by these experimental techniques and its solution by solving the eigenvector problem. The pair correlation functions of the so-called basic scattering functions are expressed as a linear combination of eigenvectors. 展开更多
关键词 Matrix INVERSION EIGENVALUES EIGENVECTORS PAIR Correlation FUNCTIONS Basic Scattering FUNCTIONS
下载PDF
Self-assembly of Human Galectin-1 via dual supramolecular interactions and its inhibition of T-cell agglutination and apoptosis
6
作者 Wenjing Qi Yufei Zhang +4 位作者 Zdravko Kochovski Jue Wang Yan Lu Guosong Chen Ming Jiang 《Nano Research》 SCIE EI CAS CSCD 2018年第10期5566-5572,共7页
Recently, we proposed a new strategy to construct artificial plant protein assemblies, which were induced by adding a small molecule, based on dual supramolecular interactions. In this paper, we further explored this ... Recently, we proposed a new strategy to construct artificial plant protein assemblies, which were induced by adding a small molecule, based on dual supramolecular interactions. In this paper, we further explored this method by employing Human Galectin-1 (Gal-1) as a building block to form self-assembled microribbons. Two non-covalent interactions, including lactose-lectin binding and dimerization of Rhodamine B (RhB), induced by the small molecule ligand addition, were involved in the crosslinking of the animal protein, resulting in the formation of assemblies. By using transmission electron microscopy (TEM), cryo-electron microscopy (cryo-EM), and three-dimensional (3D) tomographic analysis, we arrived at a possible mechanistic model for the microribbon formation. Furthermore, the morphology of protein assemblies could be fine-tuned by varying the incubation time, the protein/ligand ratio, and the chemical structures of ligands. Interestingly, the formation of protein microribbons successfully inhibited Gal-1 induced T-cell agglutination and apoptosis. This is because the multivalent and dynamic interactions in protein assemblies compete with the binding between Gal-1 and the glycans on cell surfaces, which suppresses the function of Gal-1 in promotion of tumor progression and metastasis. 展开更多
关键词 protein self-assembly supramolecularinteractions GALECTIN cell agglutination
原文传递
Three-dimensional structured on-chip stacked zone plates for nanoscale X-ray imaging with high efficiency
7
作者 Stephan Werner Stefan Rehbein Peter Guttmann Gerd Schneider 《Nano Research》 SCIE EI CAS CSCD 2014年第4期528-535,共8页
Fresnel zone plates are the key optical elements for nanoscale focusing of X-ray beams with high spatial resolution. Conventional zone plates manufactured by planar nanotechnology processes are limited by the achievab... Fresnel zone plates are the key optical elements for nanoscale focusing of X-ray beams with high spatial resolution. Conventional zone plates manufactured by planar nanotechnology processes are limited by the achievable aspect ratios of their zone structures. Additionally, ultra-high resolution X-ray optics with high efficiency requires three-dimensional (3-D) shaped tilted zones. The combination of high spatial resolution and high diffraction efficiency is a fundamental problem in X-ray optics. Based on electrodynamical simulations, we find that the optimized zone plate profile for volume diffraction is given by zone structures with radially increasing tilt angles and decreasing zone heights. On-chip stacking permits the realization of such advanced 3-D profiles without significant loss of the maximum theoretical efficiency. We developed triple layer on-chip stacked zone plates with an overlay accuracy of sub-2 nm which fulfills the nanofabrication requirements. Efficiency measurements of on-chip stacked zone plates show significantly increased values compared to conventional zone plates. 展开更多
关键词 X-ray optics Fresnel zone plates X-ray imaging X-ray microscopy volume diffraction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部