The dispersion is mainly governed by wind field and depends on the planetary boundary layer (PBL) dynamics. Accurate representation of the meteorological weather fields would improve the dispersion assessments. In urb...The dispersion is mainly governed by wind field and depends on the planetary boundary layer (PBL) dynamics. Accurate representation of the meteorological weather fields would improve the dispersion assessments. In urban areas representation of wind around the obstacles is not possible for the pollution dispersion studies using Gaussian based modeling studies. It is widely accepted that computational fluid dynamics (CFD) tools would provide reasonably good solution to produce the wind fields around the complex structures and other land scale elements. By keeping in view of the requirement for the micro-scale dispersion, a commercial CFD model PANACHE with PANEPR developed by Fluidyn is implemented to study the micro-scale dispersion of air pollution over an urban setup at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam a coastal station in the east coast of India under stable atmospheric conditions. Meso-scale module of the PANACHE model is integrated with the data generated at the site by IGCAR under RRE (Round Robin Exercise) program to develop the flow fields. Using this flow fields, CFD model is integrated to study the micro-scale dispersion. Various pollution dispersion scenarios are developed using hypothetical emission inventory during stably stratified conditions to understand the micro-scale dispersion over different locations of coastal urban set up in the IGCAR region of Kalpakkam.展开更多
In this paper,two types of copper-aluminum heterogeneous electrode plates are stacked and the finite element analysis(FEA)models of two different laser welding conditions are built by using SYSWELD welding simulation ...In this paper,two types of copper-aluminum heterogeneous electrode plates are stacked and the finite element analysis(FEA)models of two different laser welding conditions are built by using SYSWELD welding simulation software to calculate the depth of the welding bead and the temperature distribution of the welding surface.Then,the residual stress analysis data of the welded area are exported and the residual stress is applied to the welded specimen for CAE analysis to ensure that the welding bonding strength meets the design target of a shear force of 500 N or higher.The copper-aluminum laser-stacking simulation technique in this paper can be applied to the manufacturing of copper-aluminum heterogeneous laser-welded electrodes and series-connected electrodes of automotive lithium-ion power battery modules,providing an effective analysis method for welding bonding-strength.展开更多
Liquid injection, and film formation and transport in dense-phase gas-solids fluidized beds are numerically simulated in three dimensions using a collisional exchange model that is based on the mechanism that collisio...Liquid injection, and film formation and transport in dense-phase gas-solids fluidized beds are numerically simulated in three dimensions using a collisional exchange model that is based on the mechanism that collisions cause transfer of liquid mass, momentum, and energy between particles. In the model, each of the particles is represented by a solid core and a liquid film surrounding the core. The model is incorporated in the framework of the commercial code Barracuda developed by CPFD Software. The commercial software is an advanced CFD-based computational tool where the particles are treated as discrete entities, calculated by the MP-PIC method, and tracked using the Lagrangian method. Details of the collisional liquid transfer model have been previously presented in O'Rourke, Zhao, and Snider (2009); this paper presents new capabilities and proof-testing of the collision model and a new method to better quantify the penetration length. Example calculations of a fluidized bed without liquid injection show the expected effect of collisions on the reduction of granular temperature (fluctuational kinetic energy) of the bed. When applied to liquid injection into a dense-phase fluidized bed under different conditions, the model predicts liquid penetration lengths comparable to the experiments. In addition, the simulation reveals for the first time the dynamic mixing of the liquid droplets with the bed particles and the transient distribution of the droplets inside the bed.展开更多
A cellular model based on the Incrementally Modular Abstraction Hierarchy (IMAH) is a novel model that can represent the architecture of and changes in cyberworlds, preserving invariants from a general level to a sp...A cellular model based on the Incrementally Modular Abstraction Hierarchy (IMAH) is a novel model that can represent the architecture of and changes in cyberworlds, preserving invariants from a general level to a specific one. We have developed a data processing system called the Cellular Data System (CDS). In the development of business applications, you can prevent combinatorial explosion in the process of business design and testing by using CDS. In this paper, we have first designed and implemented wide-use algebra on the presentation level. Next, we have developed and verified the effectiveness of two general business applications using CDS: 1) a customer information management system, and 2) an estimate system.展开更多
文摘The dispersion is mainly governed by wind field and depends on the planetary boundary layer (PBL) dynamics. Accurate representation of the meteorological weather fields would improve the dispersion assessments. In urban areas representation of wind around the obstacles is not possible for the pollution dispersion studies using Gaussian based modeling studies. It is widely accepted that computational fluid dynamics (CFD) tools would provide reasonably good solution to produce the wind fields around the complex structures and other land scale elements. By keeping in view of the requirement for the micro-scale dispersion, a commercial CFD model PANACHE with PANEPR developed by Fluidyn is implemented to study the micro-scale dispersion of air pollution over an urban setup at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam a coastal station in the east coast of India under stable atmospheric conditions. Meso-scale module of the PANACHE model is integrated with the data generated at the site by IGCAR under RRE (Round Robin Exercise) program to develop the flow fields. Using this flow fields, CFD model is integrated to study the micro-scale dispersion. Various pollution dispersion scenarios are developed using hypothetical emission inventory during stably stratified conditions to understand the micro-scale dispersion over different locations of coastal urban set up in the IGCAR region of Kalpakkam.
基金sponsored by the MOEA(Ministry of Economic Affairs)from the Technology Development Program No.109-EC-17-A-25-1581。
文摘In this paper,two types of copper-aluminum heterogeneous electrode plates are stacked and the finite element analysis(FEA)models of two different laser welding conditions are built by using SYSWELD welding simulation software to calculate the depth of the welding bead and the temperature distribution of the welding surface.Then,the residual stress analysis data of the welded area are exported and the residual stress is applied to the welded specimen for CAE analysis to ensure that the welding bonding strength meets the design target of a shear force of 500 N or higher.The copper-aluminum laser-stacking simulation technique in this paper can be applied to the manufacturing of copper-aluminum heterogeneous laser-welded electrodes and series-connected electrodes of automotive lithium-ion power battery modules,providing an effective analysis method for welding bonding-strength.
文摘Liquid injection, and film formation and transport in dense-phase gas-solids fluidized beds are numerically simulated in three dimensions using a collisional exchange model that is based on the mechanism that collisions cause transfer of liquid mass, momentum, and energy between particles. In the model, each of the particles is represented by a solid core and a liquid film surrounding the core. The model is incorporated in the framework of the commercial code Barracuda developed by CPFD Software. The commercial software is an advanced CFD-based computational tool where the particles are treated as discrete entities, calculated by the MP-PIC method, and tracked using the Lagrangian method. Details of the collisional liquid transfer model have been previously presented in O'Rourke, Zhao, and Snider (2009); this paper presents new capabilities and proof-testing of the collision model and a new method to better quantify the penetration length. Example calculations of a fluidized bed without liquid injection show the expected effect of collisions on the reduction of granular temperature (fluctuational kinetic energy) of the bed. When applied to liquid injection into a dense-phase fluidized bed under different conditions, the model predicts liquid penetration lengths comparable to the experiments. In addition, the simulation reveals for the first time the dynamic mixing of the liquid droplets with the bed particles and the transient distribution of the droplets inside the bed.
文摘A cellular model based on the Incrementally Modular Abstraction Hierarchy (IMAH) is a novel model that can represent the architecture of and changes in cyberworlds, preserving invariants from a general level to a specific one. We have developed a data processing system called the Cellular Data System (CDS). In the development of business applications, you can prevent combinatorial explosion in the process of business design and testing by using CDS. In this paper, we have first designed and implemented wide-use algebra on the presentation level. Next, we have developed and verified the effectiveness of two general business applications using CDS: 1) a customer information management system, and 2) an estimate system.