Dynamic optimization relies on runtime profile information to improve the performance of program execution. Traditional profiling techniques incur significant overhead and are not suitable for dynamic optimization. In...Dynamic optimization relies on runtime profile information to improve the performance of program execution. Traditional profiling techniques incur significant overhead and are not suitable for dynamic optimization. In this paper, a new profiling technique is proposed, that incorporates the strength of both software and hardware to achieve near-zero overhead profiling. The compiler passes profiling requests as a few bits of information in branch instructions to the hardware, and the processor executes profiling operations asynchronously in available free slots or on dedicated hardware. The compiler instrumentation of this technique is implemented using an Itanium research compiler. The result shows that the accurate block profiling incurs very little overhead to the user program in terms of the program scheduling cycles. For example, the average overhead is 0.6% for the SPECint95 benchmarks. The hardware support required for the new profiling is practical. The technique is extended to collect edge profiles for continuous phase transition detection. It is believed that the hardware-software collaborative scheme will enable many profile-driven dynamic optimizations for EPIC processors such as the Itanium processors.展开更多
Zero knowledge sets is a new cryptographic primitive introduced by Micali, Rabin, and Kilian in FOCS 2003. It has been intensively studied recently. However all the existing ZKS schemes follow the basic structure by M...Zero knowledge sets is a new cryptographic primitive introduced by Micali, Rabin, and Kilian in FOCS 2003. It has been intensively studied recently. However all the existing ZKS schemes follow the basic structure by Micali et al. That is, the schemes employ the Merkle tree as a basic structure and mercurial commitments as the commitment units to nodes of the tree. The proof for any query consists of an authentication chain. We propose in this paper a new algebraic scheme that is completely different from all the existing schemes. Our new scheme is computationally secure under the standard strong RSA assumption. Neither mercurial commitments nor tree structure is used in the new construction. In fact, the prover in our construction commits the desired set without any trapdoor information, which is another key important difference from the previous approaches.展开更多
文摘Dynamic optimization relies on runtime profile information to improve the performance of program execution. Traditional profiling techniques incur significant overhead and are not suitable for dynamic optimization. In this paper, a new profiling technique is proposed, that incorporates the strength of both software and hardware to achieve near-zero overhead profiling. The compiler passes profiling requests as a few bits of information in branch instructions to the hardware, and the processor executes profiling operations asynchronously in available free slots or on dedicated hardware. The compiler instrumentation of this technique is implemented using an Itanium research compiler. The result shows that the accurate block profiling incurs very little overhead to the user program in terms of the program scheduling cycles. For example, the average overhead is 0.6% for the SPECint95 benchmarks. The hardware support required for the new profiling is practical. The technique is extended to collect edge profiles for continuous phase transition detection. It is believed that the hardware-software collaborative scheme will enable many profile-driven dynamic optimizations for EPIC processors such as the Itanium processors.
基金This work is supported by NSF of USA under Grant Nos.IIS-0430274, and CCR-0325951, and sponsors of CERIASRui Xue is partially supported by the Fund of the China Scholarship Council, partially by National Natural Science Foundation of China under Grant No.60773029+1 种基金National Grand Fundamental Research 973 Program of China under Grant No.2007CB311202the National High Technology Research and Development 863 Program of China under Grant No.2006AA01Z427.
文摘Zero knowledge sets is a new cryptographic primitive introduced by Micali, Rabin, and Kilian in FOCS 2003. It has been intensively studied recently. However all the existing ZKS schemes follow the basic structure by Micali et al. That is, the schemes employ the Merkle tree as a basic structure and mercurial commitments as the commitment units to nodes of the tree. The proof for any query consists of an authentication chain. We propose in this paper a new algebraic scheme that is completely different from all the existing schemes. Our new scheme is computationally secure under the standard strong RSA assumption. Neither mercurial commitments nor tree structure is used in the new construction. In fact, the prover in our construction commits the desired set without any trapdoor information, which is another key important difference from the previous approaches.