期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
The impact of nitrogen amendment and crop growth on dissolved organic carbon in soil solution 被引量:7
1
作者 WANG Xiao-guo LI Chang-sheng +2 位作者 LUO Yong HUA Ke-ke ZHOU Ming-hua 《Journal of Mountain Science》 SCIE CSCD 2016年第1期95-103,共9页
Dissolved organic carbon(DOC) is an important component of the terrestrial carbon cycle.However,the sources and controlling factors of DOC in soils remain uncertain.In this study,the effects of nitrogen(N) amendment a... Dissolved organic carbon(DOC) is an important component of the terrestrial carbon cycle.However,the sources and controlling factors of DOC in soils remain uncertain.In this study,the effects of nitrogen(N) amendment and crop growth on DOC in soil solution were examined at a maize-wheat rotated field located in the central Sichuan Basin in southwestern China.Nitrogen treatments in this study included 150 kg N ha-1 season-1,200 kg N ha-1 season-1 and the control without any fertilizer application.During the whole experimental period,we observed significant decreases(p<0.05) in DOC concentrations in the sampled soil solutions associated with increase in N inputs at the bare soil plots,but no change in DOC at the plots with crop growth.The estimated average contributions of plantderived DOC were 16%,24% and 32% of total DOC in the summer maize season and 21%,32% and 38% in the winter wheat season along with the gradient of N fertilizer application rates.The results implied thatthe crop growth could play a key role in the soil DOC production,and the N input enhanced DOC production by increasing crop growth.The relationship between the DOC concentrations and the crop root biomass was statistically significant for both the maize and winter wheat seasons.Our observations indicated that crop growth exerted greater influence on the seasonal variability of DOC concentration in soil solutions at the experimental site,which overwhelmed the effect of soil native organic matter decomposition on DOC concentrations in soil solutions. 展开更多
关键词 下线 服务 迁移
下载PDF
Study the Changes in Soil Organic Carbon of Rice-Maize Cropping System in the Top Layer of Alluvisol Soil in Dan Phuong: A Study of C-13 Stable Isotope Composition (<i>&delta;</i><sup>13</sup>C) 被引量:1
2
作者 Nguyen Thi Hong Thinh Vu Hoai +4 位作者 Ha Lan Anh Vo Thi Anh Truong Viet Chau Trinh Van Giap Tran Minh Tien 《Journal of Environmental Protection》 2019年第10期1361-1372,共12页
In this study, the experiments on field were conducted to examine the change in the content of soil organic carbon (SOC), its C-13 stable isotope composition (δ 13C) and some main physical, chemical parameters (soil ... In this study, the experiments on field were conducted to examine the change in the content of soil organic carbon (SOC), its C-13 stable isotope composition (δ 13C) and some main physical, chemical parameters (soil moisture, pH, soil density, content of humic, fulvic, total N, total P, total K) in alluvial soil of Dan Phuong region—Vietnam at a depth of 0 - 30 cm when we changed the regime from 2 maize -1 rice crop to 2 rice - 1 maize crop per 1 year. In addition to analyzing the main parameters in soil, C content and its δ 13C value in parts of rice and maize (root, stem and leaf) were also analyzed to assess the contribution of plant residues on soil organic carbon content after harvest. The experiment was carried out in 2016-2017 on the field with the traditional farming method of local farmers along with the tropical monsoon weather conditions of the North-Vietnam. The results showed that SOC had positive correlation with total N, total P parameters and negative correlation with δ 13C values of soil samples at two layers (0 - 15 cm and 15 - 30 cm). The average of total dry biomass (stem, stump + roots and leaf parts) per 1 rice and 1 maize crop was 10.64 Mg/ha and 9.09 Mg/ha, respectively. The average of δ 13C value of rice (C3 plant) was -29.78‰ and its value of maize (C4 plant) was -12.61‰. The new plant (rice) contributes to the total soil organic carbon content from 11.31% to 44.14% at the 0 - 15 cm layer and from 6.55% to 11.31% at the 15 - 30 cm layer in one-year experiment period. 展开更多
关键词 SOIL Organic Carbon (SOC) C-13 Stable Isotope MAIZE and RICE Crop SOIL Properties
下载PDF
Isolation and Selection of Beneficial Microorganism Used for Peanut Growing in Sandy Soil of Binhdinh Province, Vietnam
3
作者 Pham Van Toan Nguyen Thu Ha 《Journal of Agricultural Science and Technology(B)》 2015年第10期664-671,共8页
下载PDF
Studies on the Mechanism of Single Basal Application of Controlled-Release Fertilizers for Increasing Yield of Rice (Oryza sativa L.) 被引量:28
4
作者 TANG Shuan-hu YANG Shao-hai +4 位作者 CHEN Jian-sheng XU Pei-zhi ZHANG Fa-bao AI Shao-ying HUANG Xu 《Agricultural Sciences in China》 CAS CSCD 2007年第5期586-596,共11页
This paper was to explore the mechanism of single basal application of controlled-release fertilizers for increasing yield of rice (Oryza sativa L.). Pot trials and cylinder trials were carried out from 2002 to 2005... This paper was to explore the mechanism of single basal application of controlled-release fertilizers for increasing yield of rice (Oryza sativa L.). Pot trials and cylinder trials were carried out from 2002 to 2005 to study the influences of single basal application of 3 controlled-release fertilizers on the changes of soil available N, root development, senescence and lodging resistance at late growth stages. Results showed that at 30 days after fertilization, single basal application of controlled-release fertilizers coated with vegetal-substance (CRF1) and polymer materials (CRF3) increased soil available N to 12.0 and 147.9%, respectively, in comparison to split fertilization of rice-specific fertilizer (RSF1). Treatments of the two CRFs obviously benefited the development of root system, resulting in greater rice root weights with extensive distribution and higher root activity. In addition, the two CRF treatments, in comparison to RSF1, enhanced chlorophyll consents of the flag leaves to 9.5 and 15.5%, and soluble protein up to 89.7 and 108.0% respectively. Application of the two CRFs also made the base of rice stems strong and large, declined the proportion of shoot and root, increased root depth index. Though relatively low K rate, single basal application of the CRF3 coated with NH4MgPO4 could also promote the development of root system, enhance root activity and some physiological functions of flag leaves. Based on these results, it was concluded that major mechanisms for increasing rice yield by single basal application of the CRFs should be attributed to grater soil available N supply, superior development of root systems, better nutrient absorption capacity, slower senescence and enhancement of lodging resistance at late stages. 展开更多
关键词 rice (Oryza sativa L.) single basal fertilization controlled-release fertilizer root system available nitrogen
下载PDF
Genetic Analysis and Mapping of TWH Gene in Rice Twisted Hull Mutant 被引量:6
5
作者 LI Jin-bo XIA Ming-yuan +4 位作者 WAN Bing-liang DU Xue-shu ZHA Zhong-ping Yu Da-zhao QI Hua-xiong 《Rice science》 SCIE 2009年第1期79-82,共4页
A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.). The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that t... A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.). The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that the phenotype of mutant was controlled by a single recessive gene (temporarily designated as TW(H). To map the TWH gene, an F2 population was generated by crossing the twh mutant to R725, an indica rice variety with normal hulls. For bulked segregant analysis, the bulk of mutant plants was prepared by mixing equal amount of plant tissue from 10 twisted-hull plants and the bulk of normal plants was obtained by pooling equal amount tissue of 10 normal-hull plants. Two hundred and seven pairs of simple sequence repeat (SSR) primers, which are distributed on 12 rice chromosomes, were used for polymorphism analysis of the parents and the two bulks. The TWH locus was initially mapped close to the SSR marker RM526 on chromosome 2. Therefore, further mapping was performed using 50 pairs of SSR primers around the marker RM526. The TWH was delimited between the SSR markers RM14128 and RM208 on the long arm of chromosome 2 at the genetic distances of 1.4 cM and 2.7 cM, respectively. These results provide the foundation for further fine mapping, cloning and functional analysis of the TWH gene. 展开更多
关键词 RICE twisted-hull mutant genetic analysis gene mapping
下载PDF
Influence of P-enriched compost application on economics and P use efficiency of a maize–wheat rotation system 被引量:2
6
作者 Abdul Majeed Shahzada Munawar Mehdi +5 位作者 Abid Niaz Abid Mahmood Ehsan-Ul-Haq Naeem Ahmad Shahid Javid Atif Mehmood 《The Crop Journal》 SCIE CAS CSCD 2018年第6期651-658,共8页
Crop phosphorus(P) deficiency and poor utilization of added P is a major agricultural problem due to reduced solubility of soil P and rapid fixation or precipitation of applied P fertilizer in alkaline and calcareous ... Crop phosphorus(P) deficiency and poor utilization of added P is a major agricultural problem due to reduced solubility of soil P and rapid fixation or precipitation of applied P fertilizer in alkaline and calcareous soils. The effects of P-enriched compost and single superphosphate(SSP) fertilization on maize and wheat yields and P use efficiency in a maize–wheat rotation system were studied for three years. On a three-year average, grain yields of maize and wheat after application of P-enriched compost were increased by 18% and 24%, respectively, in comparison with sole addition of a recommended dose of SSP fertilizer. P-enriched compost addition to soil increased maize and wheat yields by 12% and 17%, respectively, compared to P fertilizer plus FYM incorporation. Soil available P concentration and P uptake were affected significantly by the addition of P-enriched compost. On average, increases in P recovery, use efficiency, and agronomic efficiency of 52%, 18%, and 43% were recorded in maize and increases of 50%, 23%, and 49% in wheat. P-enriched compost application yielded 30% and 32%higher economic returns in maize and wheat than SSP fertilization alone. 展开更多
关键词 P-enriched COMPOST MAIZE WHEAT Farmyard MANURE P-uptake
下载PDF
Antioxidative and hepatoprotective activities of a novel polysaccharide (LSAP) from Lepista sordida mycelia 被引量:2
7
作者 Yingyin Xu Yuanhui Li +3 位作者 Yuxiao Lu Xiaobin Feng Guoting Tian Qinghong Liu 《Food Science and Human Wellness》 SCIE 2021年第4期536-544,共9页
A novel alkali-soluble polysaccharide from Lepista sordida(LSAP)mycelia with antioxidative and hepatoprotective activities was characterized.The weight-average molecular weight and number-average molecular weight of L... A novel alkali-soluble polysaccharide from Lepista sordida(LSAP)mycelia with antioxidative and hepatoprotective activities was characterized.The weight-average molecular weight and number-average molecular weight of LSAP were 1.442×10^(3) and 6.05×10^(2) kDa,respectively.LSAP was consisted of glucose(57.9%),xylose(31.8%),and small amounts of rhamnose,arabinose,galactose,glucuronic acid,and galacturonic acid(1.2%–3.1%).The FT-IR and 2D NMR confi rmed that LSAP was composed of Xylp,Araf,4-O-Me-α-D-GlcpA,(1→4)-linkedβ-D-Glcp,and(1→4)-α-D-GalA,andβ-glycosidic linkages between these sugar units.LSAP displayed notable effects on 1,1-dephenyl-2-picryhydrazyl(DPPH)radical scavenging,hydrogen peroxide scavenging,lipid peroxidation inhibitory ability,reducing power and Fe^(2+)chelating property.These biological effects were further verifi ed by suppressing CCl_(4)-induced oxidative liver damage in mice at doses of 100 and 200 mg/kg.Administration of LSAP in mice prior to CCl_(4) signifi cantly prevented the CCl_(4)-induced elevation in serum alanine aminotransferase,aspartate aminotransferase,and hepatic malondialdehyde.Mice treated with LSAP demonstrated to increase activities in superoxide dismutase(SOD)and glutathione peroxidase(GSH-Px)in the liver.We also found out that LSAP prevented CCl_(4)-induced oxidative liver histological alteration.LSAP may exert hepatoprotective effects against CCl_(4)-induced damage through antioxidant mechanisms in model mice. 展开更多
关键词 Lepista sordida POLYSACCHARIDE Antioxidant activity Hepatoprotective effects
下载PDF
Effect of different fertilization on spring cabbage (<i>Brassica oleracea L. var. capitata</i>) production and fertilizer use efficiencies 被引量:1
8
作者 Zhibin Guo ChuanLong He +4 位作者 Youhua Ma Hongbin Zhu Feng Liu Daozhong Wang Li Sun 《Agricultural Sciences》 2011年第3期208-212,共5页
Just after transplanting, the vegetable has difficulty in nutrients uptake. To explore the effect of different fertilization on spring cabbage (Brassica oleracea L. var. capitata) production and fertilizer use efficie... Just after transplanting, the vegetable has difficulty in nutrients uptake. To explore the effect of different fertilization on spring cabbage (Brassica oleracea L. var. capitata) production and fertilizer use efficiencies, this experiment consisting of six treatments was implemented and divided into three groups: 1) no fertilizer (NF) and vegetable planting fertilizer (VPF);2) conventional fertilizer (CF) and conventional fertilizer + vegetable planting fertilizer (CVPF);3) reduced fertilizer application (RFA) and reduced fertilizer application + vegetable planting fertilizer (RVPF). The results of this experiment indicated that the yields of spring cabbage treated by VPF increased by 38.20% in VPF, 16.00% in CVPF and 20.40% in RVPF than their controls respectively. Additionally, the VPF helped improve the total and economic yields of the spring cabbage in all groups, and the economic benefits increased by 38.21% in VPF, 15.97% in CVPF and 20.42% in RVPF than their controls respectively. Finally, the VPF was of benefit to spring cabbage to exploit the soil nutrients and helped improve the chemical fertilizer use efficiencies. Therefore, it is an efficient, economical and ecological fertilization for vegetable production to apply chemical fertilizers in combination with VPF. 展开更多
关键词 Spring CABBAGE FERTILIZER Use Efficiency
下载PDF
Combined application of organic manure and chemical fertilizers stabilizes soil N-cycling microflora
9
作者 Ruibo Sun Daozhong Wang +5 位作者 Zhibin Guo Keke Hua Xisheng Guo Yan Chen Binbin Liu Haiyan Chu 《Soil Ecology Letters》 CSCD 2023年第3期5-11,共7页
Straw and manure are widely applied to agricultural systems,and greatly shape soil N-cycling microflora.However,we still lack a comprehensive understanding of how these organic materials structure soil N-cycling micro... Straw and manure are widely applied to agricultural systems,and greatly shape soil N-cycling microflora.However,we still lack a comprehensive understanding of how these organic materials structure soil N-cycling microbial communities.In this study,metagenomic analysis was performed to investigate the compositional variation in N-cycling microbial communities in a 30-year long-term experiment under five fertilization regimes:no fertilization(Control),chemical fertilization only(NPK),and NPK with wheat straw(NPK+HS),pig manure(NPK+PM),and cow manure(NPK+CM).Long-term NPK application differentially changed N-cycling gene abundance and greatly altered N-cycling microbial community structure.NPK+HS resulted in a similar pattern to NPK in terms of gene abundance and community structure.However,NPK+PM and NPK+CM significantly increased most genes and resulted in a community similar to that of the Control.Further analysis revealed that serious soil acidification caused by long-term NPK fertilization was a major factor for the variation in N-cycling microbial communities.The addition of alkaline manure,rather than wheat straw,stabilized the N-cycling microbial community structure presumably by alleviating soil acidification.These results revealed the strong impact of soil acidification on microbial N-cycling communities and illustrated the possibility of resolving nitrogen-related environmental problems by manipulating pH in acidified agricultural soils. 展开更多
关键词 microbial nitrogen cycle METAGENOMICS long-term fertilization soil acidification MANURE
原文传递
Complementary effect of zoo compost with mineral nitrogen fertilisation increases wheat yield and nutrition in a low-nutrient soil 被引量:1
10
作者 Muhammad S.A.KHAN Lynette K.ABBOTT +3 位作者 Zakaria M.SOLAIMAN Peter R.MAWSON Ian S.WAITE Sasha N.JENKINS 《Pedosphere》 SCIE CAS CSCD 2022年第2期339-347,共9页
Excess nitrogen(N) fertiliser use in agriculture is associated with water pollution and greenhouse gas emissions.While practices and programs to reduce N fertiliser application continue to be developed,inefficient fer... Excess nitrogen(N) fertiliser use in agriculture is associated with water pollution and greenhouse gas emissions.While practices and programs to reduce N fertiliser application continue to be developed,inefficient fertiliser use persists.Practices that reduce mineral N fertiliser application are needed in a sustainable agricultural ecosystem to control leaching and gaseous losses for environmental management.This study evaluated whether fully or partially replacing mineral N fertiliser with zoo compost(Perth Zoo) could be a good mitigation strategy to reduce mineral N fertiliser application without affecting wheat yield and nutrition.To achieve this,a glasshouse experiment was conducted to assess the complementary effect of zoo compost and mineral N fertiliser on wheat yield and nutrition in a sandy soil of southwestern Australia.Additionally,a chlorophyll meter was used to determine whether there was a correlation between chlorophyll content and soil mineral N content,grain N uptake,and grain protein content at the tillering(42 d after sowing(DAS)) and heading(63 DAS) growth stages.The standard practice for N application for this soil type in this area,100 kg ha^(-1),was used with a soil bulk density of 1.3 g cm^(-3) to calculate the amount of mineral N(urea,46% N) and Perth Zoo compost(ZC)(0.69% N) for each treatment.Treatments comprised a control(no nutrients added,T1),mineral N only(100 kg N ha^(-1),T2),ZC only(100 kg N ha^(-1),T7),and combinations of mineral N and ZC at different rates(mineral N at 100 kg N ha^(-1)+ ZC at 25 kg N ha^(-1)(T3),mineral N at 75 kg N ha^(-1)+ ZC at 25 kg N ha^(-1)(T4),mineral N at 75 kg N ha^(-1)+ ZC at 50 kg N ha^(-1)(T5),and mineral N at 50 kg N ha^(-1)+ ZC at 50 kg N ha^(-1)(T6)).The T6 treatment significantly increased grain yield(by 26%) relative to the T2 treatment.However,the T7 treatment did not affect grain yield when compared to the T2 treatment.All treatments with mineral N and ZC in combination significantly improved the 1 000-grain weight compared to the T2 treatment.Chlorophyll content was better correlated with soil mineral N content(r = 0.61),grain N uptake(r = 0.62),and grain protein content(r = 0.80) at heading(63 DAS) than at tillering(42 DAS).While ZC alone could not serve as an alternative to mineral N fertiliser,its complementary use could reduce the mineral N fertiliser requirement by up to 50% for wheat without compromising grain yield,which needs to be verified in the field.Chlorophyll content could be used to predict soil mineral N at the heading stage,and further studies are warranted to verify its accuracy in the field.Overall,the application of ZC as part of integrated nutrient management improved crop yield with reduced N fertiliser application. 展开更多
关键词 chlorophyll meter SPAD measurement integrated nutrient management nitrogen use efficiency reduced N fertiliser application wheat yield
原文传递
AOA and AOB communities respond differently to changes of soil pH under long-term fertilization 被引量:2
11
作者 Ruibo Sun David DMyrold +2 位作者 Daozhong Wang Xisheng Guo Haiyan Chu 《Soil Ecology Letters》 CAS 2019年第3期126-135,共10页
Archaeal and bacterial ammonia-oxidizers drive the first step of nitrification,ammonia oxidation.Despite their importance,the relative contribution of soil factors influencing the abundance,diversity and community com... Archaeal and bacterial ammonia-oxidizers drive the first step of nitrification,ammonia oxidation.Despite their importance,the relative contribution of soil factors influencing the abundance,diversity and community composition of ammonia oxidizing archaea(AOA)and bacteria(AOB)are seldom compared.In this study,the AOA and AOB communities in soils from a long-term fertilization experiment(which formed gradients of pH and nutrients)were measured using 454 pyrosequencing of the amoA gene.Results showed that both AOA and AOB communities were influenced by fertilization practice.Changes of AOA abundance,diversity and community structure were closely correlated with a single factor,soil pH,and the abundance and diversity of AOA were lower under the acidified treatments.By contrast,AOB abundance was higher in the acidified soil than in the control soil while AOB diversity was little impacted by soil acidification,and both the abundance and diversity of AOB were most highly correlated with soil carbon and available phosphorus.These results indicated that AOB diversity seemed more resistant to soil acidification than that of AOA,and also suggested that AOB have greater ecophysiological diversity and broader range of habitats than AOA in this lime concretion black soil,and the potential contribution of AOB to ammonia oxidation in acid environments should not be overlooked. 展开更多
关键词 AOA AOB Microbial diversity Soil pH Long-term fertilization High-throughput sequencing
原文传递
Optimization of nitrogen fertilizer rate under integrated rice management in a hilly area of Southwest China 被引量:3
12
作者 Yujiao DONG Jiang YUAN +4 位作者 Guangbin ZHANG Jing MA Padilla HILARIO Xuejun LIU Shihua LU 《Pedosphere》 SCIE CAS CSCD 2020年第6期759-768,共10页
China has the world’s highest nitrogen(N)application rate,and the lowest N use efficiency(NUE).With the crop yield increasing,serious N pollution is also caused.An in-situ field experiment(2011–2015)was conducted to... China has the world’s highest nitrogen(N)application rate,and the lowest N use efficiency(NUE).With the crop yield increasing,serious N pollution is also caused.An in-situ field experiment(2011–2015)was conducted to examine the effects of three N levels,0(i.e.,no fertilizer N addition to soil),120,and 180 kg N ha-1,using integrated rice management(IRM).We investigated rice yield,aboveground N uptake,and soil surface N budget in a hilly region of Southwest China.Compared to traditional rice management(TRM),IRM integrated raised beds,plastic mulch,furrow irrigation,and triangular transplanting,which significantly improved rice grain yield,straw biomass,aboveground N uptake,and NUE.Integrated rice management significantly improved 15N recovery efficiency(by 10%)and significantly reduced the ratio of potential15N loss(by 8%–12%).Among all treatments,the 120 kg N ha-1 level under IRM achieved the highest 15N recovery efficiency(32%)and 15N residual efficiency(29%),with the lowest 15N loss ratio(39%).After rice harvest,the residual N fertilizer did not achieve a full replenishment of soil N consumption,as the replenishing effect was insufficient(ranging from-31 to-49 kg N ha-1).Furthermore,soil surface N budget showed a surplus(69–146 kg N ha-1)under all treatments,and the N surplus was lower under IRM than TRM.These results indicate IRM as a reliable and stable method for high rice yield and high NUE,while exerting a minor risk of N loss.In the hilly area of Southwest China,the optimized N fertilizer application rate under IRM was found to be 100–150 kg N ha-1. 展开更多
关键词 N input N output ^(15)N recovery efficiency N surplus N use efficiency plastic mulch soil surface N budget
原文传递
Effects of disinfection efficiency on microbial communities and corrosion processes in drinking water distribution systems simulated with actual running conditions 被引量:2
13
作者 Ying Zhu Lu Chen +9 位作者 Hong Xiao Fei Shen Shihuai Deng Shirong Zhang Jinsong He Chun Song Xie Wang Jianhua Zhang Li Gong Chun Hu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第2期273-282,共10页
The effects of disinfection efficiency on microbial communities and the corrosion of cast iron pipes in drinking water distribution systems(DWDSs) were studied.Two annular reactors(ARs) that simulated actual running c... The effects of disinfection efficiency on microbial communities and the corrosion of cast iron pipes in drinking water distribution systems(DWDSs) were studied.Two annular reactors(ARs) that simulated actual running conditions with UV/Cl2 disinfection and chlorination alone were used.High chlorine consumption and corrosion rate were found in the AR with UV/Cl2.According to functional genes and pyrosequencing tests, a high percentage of iron recycling bacteria was detected within the biofilm of the AR with Cl2 at early running stage, whereas siderophore-producing bacteria were dominant in the biofilm of the AR with UV/Cl2.At the early running stage, the sequential use of UV light and an initial high chlorine dosage suppressed the biomass and iron-recycling bacteria in both bulk water and biofilms, thereby forming less protective scales against further corrosion, which enhanced chlorine consumption.Non-metric multidimensional scaling analysis showed that the bacterial communities in the ARs shaped from within rather than being imported by influents.These results indicate that the initial high disinfection efficiency within the distribution system had not contributed to the accumulation of iron-recycling bacteria at the early running stages.This study offer certain implications for controlling corrosion and water quality in DWDSs. 展开更多
关键词 DISINFECTION EFFICIENCY BIOFILM Iron-recycling bacteria Corrosion DRINKING water distribution systems
原文传递
Effect of long-term fertilization on bacterial communities in wheat endosphere
14
作者 Yuying MA Pamela WEISENHORN +5 位作者 Xisheng GUO Daozhong WANG Teng YANG Yu SHI Huanchao ZHANG Haiyan CHU 《Pedosphere》 SCIE CAS CSCD 2021年第4期538-548,共11页
Fertilization has been shown to exert a significant influence on soil microorganisms and directly and indirectly influences plant growth and survival in agroecosystems. However, it is unknown whether fertilization aff... Fertilization has been shown to exert a significant influence on soil microorganisms and directly and indirectly influences plant growth and survival in agroecosystems. However, it is unknown whether fertilization affects endophytic microbial communities, which are ubiquitous and intimately associated with plant growth and health. Herein, we investigated endophytic bacterial communities in wheat leaves and roots under different long-term fertilization regimes,including NPK chemical fertilizer and NPK chemical fertilizer combined with wheat straw, pig manure, or cow manure. Endophytic bacterial community composition considerably differed in leaves and roots. Although different fertilization treatments did not affect the endophytic bacterial species richness or phylogenetic diversity in either leaves or roots, the community composition was significantly altered, particularly in roots. The endophytic bacterial co-occurrence network in leaves was more complex and stable than that in roots. Furthermore, many of the keystone species that were identified by their topological positions in the co-occurrence networks of leaves and roots were involved in plant growth and fitness. The total relative abundance of keystone species was the highest in the NPK plus cow manure treatment in both leaves and roots. Overall, our results suggest that different fertilization regimes can strongly affect endophytic bacterial communities, and the combination of NPK fertilizer and cow manure promoted the relative abundance of the key endophytic bacterial microbiota in both leaves and roots, which might be beneficial for plants in agroecosystems. 展开更多
关键词 co-occurrence network endophytic bacterial community key microbiota long-term fertilization organic matter
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部