White lupin (Lupinus albus) exhibits strong root morphological and physiological responses to phosphorus (P) deficiency and auxin treatments, but the interactive effects of P and auxin in regulating root morpholog...White lupin (Lupinus albus) exhibits strong root morphological and physiological responses to phosphorus (P) deficiency and auxin treatments, but the interactive effects of P and auxin in regulating root morphological and physiological traits are not fully understood. This study aimed to assess white lupin root traits as influenced by P (0 or 250 ~tmol L-1) and auxin (10=8 mol L-1 NAA) in nutrient solution. Both P deficiency and auxin treatments significantly altered root morphological traits, as evi- denced by reduced taproot length, increased number and density of first-order lateral roots, and enhanced cluster-root for- marion. Changes in root physiological traits were also observed, i.e., increased proton, citrate, and acid phosphatase exudation. Exogenous auxin enhanced root responses and sensitivity to P deficiency. A significant interplay exists between P and auxin in the regulation of root morphological and physiological traits. Principal component analysis showed that P availability ex- plained 64.8% and auxin addition 21.3% of the total variation in root trait parameters, indicating that P availability is much more important than auxin in modifying root responses of white lupin. This suggests that white lupin can coordinate root mor- phological and physiological responses to enhance acquisition of P resources, with an optimal trade-off between root morpho- logical and physiological traits regulated by external stimuli such as P availability and auxin.展开更多
基金Progress of Projects Supported by NSFCsupported by the National Natural Science Foundation of China (30925024, 30890131, 30871591)+3 种基金the Beijing Natural Science Foundation (6122021)the innovative group grant of NSFC (31121062)Ministry of Science and Technology of China (2013CB127402)the Innovation Fund for Graduate Student of China Agricultural University(KYCX2011040)
文摘White lupin (Lupinus albus) exhibits strong root morphological and physiological responses to phosphorus (P) deficiency and auxin treatments, but the interactive effects of P and auxin in regulating root morphological and physiological traits are not fully understood. This study aimed to assess white lupin root traits as influenced by P (0 or 250 ~tmol L-1) and auxin (10=8 mol L-1 NAA) in nutrient solution. Both P deficiency and auxin treatments significantly altered root morphological traits, as evi- denced by reduced taproot length, increased number and density of first-order lateral roots, and enhanced cluster-root for- marion. Changes in root physiological traits were also observed, i.e., increased proton, citrate, and acid phosphatase exudation. Exogenous auxin enhanced root responses and sensitivity to P deficiency. A significant interplay exists between P and auxin in the regulation of root morphological and physiological traits. Principal component analysis showed that P availability ex- plained 64.8% and auxin addition 21.3% of the total variation in root trait parameters, indicating that P availability is much more important than auxin in modifying root responses of white lupin. This suggests that white lupin can coordinate root mor- phological and physiological responses to enhance acquisition of P resources, with an optimal trade-off between root morpho- logical and physiological traits regulated by external stimuli such as P availability and auxin.