期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hierarchical N-Doped Porous Carbons for Zn–Air Batteries and Supercapacitors 被引量:4
1
作者 Beibei Guo Ruguang Ma +6 位作者 Zichuang Li Shaokui Guo Jun Luo Minghui Yang Qian Liu Tiju Thomas Jiacheng Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期60-72,共13页
Nitrogen-doped carbon materials with a large specific surface area,high conductivity,and adjustable microstructures have many prospects for energy-related applications.This is especially true for N-doped nanocarbons u... Nitrogen-doped carbon materials with a large specific surface area,high conductivity,and adjustable microstructures have many prospects for energy-related applications.This is especially true for N-doped nanocarbons used in the electrocatalytic oxygen reduction reaction(ORR)and supercapacitors.Here,we report a low-cost,environmentally friendly,large-scale mechanochemical method of preparing N-doped porous carbons(NPCs)with hierarchical micro-mesopores and a large surface area via ball-milling polymerization followed by pyrolysis.The optimized NPC prepared at 1000°C(NPC-1000)offers excellent ORR activity with an onset potential(Eonset)and half-wave potential(E1/2)of 0.9 and 0.82 V,respectively(vs.a reversible hydrogen electrode),which are only approximately 30 mV lower than that of Pt/C.The rechargeable Zn–air battery assembled using NPC-1000 and the NiFe-layered double hydroxide as bifunctional ORR and oxygen evolution reaction electrodes offered superior cycling stability and comparable discharge performance to RuO2 and Pt/C.Moreover,the supercapacitor electrode equipped with NPC prepared at 800℃ exhibited a high specific capacity(431 F g^−1 at 10 mV s^−1),outstanding rate,performance,and excellent cycling stability in an aqueous 6-M KOH solution.This work demonstrates the potential of the mechanochemical preparation method of porous carbons,which are important for energy conversion and storage. 展开更多
关键词 Porous carbon Ball milling Nitrogen doping Oxygen reduction reaction Zn-air battery SUPERCAPACITOR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部