Noise-induced hearing loss(NIHL)is primarily driven by inflammatory processes within the cochlea,where noise exposure triggers the activation of the NOD-like receptor protein 3(NLRP3)inflammasome,leading to an inflamm...Noise-induced hearing loss(NIHL)is primarily driven by inflammatory processes within the cochlea,where noise exposure triggers the activation of the NOD-like receptor protein 3(NLRP3)inflammasome,leading to an inflammatory cascade.The interaction between increased NLRP3 expression and NF-κB activity can further amplify cochlear inflammation.Our findings reveal that(R)-PFI-2 hydrochloride,a selective inhibitor of the SETD7 enzyme,effectively inhibits the activation of the cochlear NF-κB pathway,suppresses the release of proinflammatory factors,and prevents inflammasome assembly.This intervention disrupts the perpetuating cycle of inflammation,thereby alleviating damage to cochlear hair cells attributed to acoustic trauma.Consequently,(R)-PFI-2 hydrochloride emerges as a promising pharmacological candidate for NIHL,targeting and moderating the excessive immune and inflammatory responses implicated in the pathology of hearing loss.展开更多
基金supported by the Science and Technology Development Project of Xuzhou Science and Technology Bureau(KC21249)Science and Technology Development Project of Chongqing(CSTB2022NSCQ-M SX1598)+2 种基金Science and Technology Development Project of Xiaogan(XGKJ2023010010)Scientific Research Startup Foundation of Hainan UniversityScience and Technology Development Project of Hainan.
文摘Noise-induced hearing loss(NIHL)is primarily driven by inflammatory processes within the cochlea,where noise exposure triggers the activation of the NOD-like receptor protein 3(NLRP3)inflammasome,leading to an inflammatory cascade.The interaction between increased NLRP3 expression and NF-κB activity can further amplify cochlear inflammation.Our findings reveal that(R)-PFI-2 hydrochloride,a selective inhibitor of the SETD7 enzyme,effectively inhibits the activation of the cochlear NF-κB pathway,suppresses the release of proinflammatory factors,and prevents inflammasome assembly.This intervention disrupts the perpetuating cycle of inflammation,thereby alleviating damage to cochlear hair cells attributed to acoustic trauma.Consequently,(R)-PFI-2 hydrochloride emerges as a promising pharmacological candidate for NIHL,targeting and moderating the excessive immune and inflammatory responses implicated in the pathology of hearing loss.