期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Raman-Brillouin interplay for inertial confinement fusion relevant laser-plasma interaction 被引量:2
1
作者 C.Riconda S.Weber 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2016年第3期23-38,共16页
The co-existence of the Raman and Brillouin backscattering instability is an important issue for inertial confinement fusion. The present paper presents extensive one-dimensional(1D) particle-in-cell(PIC) simulations ... The co-existence of the Raman and Brillouin backscattering instability is an important issue for inertial confinement fusion. The present paper presents extensive one-dimensional(1D) particle-in-cell(PIC) simulations for a wide range of parameters extending and complementing previous findings. PIC simulations show that the scenario of reflectivity evolution and saturation is very sensitive to the temperatures, intensities, size of plasma and boundary conditions employed. The Langmuir decay instability is observed for rather small k_(epw)λ_D but has no influence on the saturation of Brillouin backscattering, although there is a clear correlation of Langmuir decay instability modes and ion-fractional decay for certain parameter ranges. Raman backscattering appears at any intensity and temperature but is only a transient phenomenon. In several configurations forward as well as backward Raman scattering is observed. For the intensities considered, I λ_o^2 above 10^(15) W μm^2/cm^2, Raman is always of bursty nature. A particular setup allows the simulation of multi-speckle aspects in which case it is found that Raman is self-limiting due to strong modifications of the distribution function. Kinetic effects are of prime importance for Raman backscattering at high temperatures. No unique scenario for the saturation of Raman scattering or Raman–Brillouin competition does exist. The main effect in the considered parameter range is pump depletion because of large Brillouin backscattering. However, in the low k_(epw)λ_D regime the presence of ion-acoustic waves due to the Langmuir decay instability from the Raman created electron plasma waves can seed the ion-fractional decay and affect the Brillouin saturation. 展开更多
关键词 Brillouin backscattering inertial confinement fusion kinetic effects laser-plasma interaction parametric instabilities particle-in-cell simulations Raman backscattering
原文传递
Short-pulse laser-driven x-ray radiography 被引量:3
2
作者 E.Brambrink S.Baton +17 位作者 M.Koenig R.Yurchak N.Bidaut B.Albertazzi J.E.Cross G.Gregori A.Rigby E.Falize A.Pelka F.Kroll S.Pikuz Y.Sakawa N.Ozaki C.Kuranz M.Manuel C.Li P.Tzeferacos D.Lamb 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2016年第3期101-105,共5页
We have developed a new radiography setup with a short-pulse laser-driven x-ray source. Using a radiography axis perpendicular to both long- and short-pulse lasers allowed optimizing the incident angle of the short-pu... We have developed a new radiography setup with a short-pulse laser-driven x-ray source. Using a radiography axis perpendicular to both long- and short-pulse lasers allowed optimizing the incident angle of the short-pulse laser on the x-ray source target. The setup has been tested with various x-ray source target materials and different laser wavelengths.Signal to noise ratios are presented as well as achieved spatial resolutions. The high quality of our technique is illustrated on a plasma flow radiograph obtained during a laboratory astrophysics experiment on POLARs. 展开更多
关键词 laboratory astrophysics short-pulse laser x-ray radiography
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部