We present a study of star-forming galaxies (SFGs) with pseudobulges (bulges with Sérsic index n<2) in a loca close major-merger galaxy pair sample (H-KPAIR).With data from new aperture photometries in the opt...We present a study of star-forming galaxies (SFGs) with pseudobulges (bulges with Sérsic index n<2) in a loca close major-merger galaxy pair sample (H-KPAIR).With data from new aperture photometries in the optical and near-infrared bands (aperture size of 7 kpc) and from the literature,we find that the mean Age of central stellar populations in Spirals with pseudobulges is consistent with that of disky galaxies and is nearly constant against the bulge-to-total ratio (B/T).Paired Spirals have a slightly lower fraction of pure disk galaxies (B/T≤0.1) than their counterparts in the control sample.Compared to SFGs with classical bulges,those with pseudobulges have a higher (>2σ) mean of specific star formation rate (sSFR) enhancement (sSFR_(enh)=0.33±0.07 versus sSFR_(enh)=0.12±0.06) and broader scatter (by~1 dex).The eight SFGs that have the highest sSFR_(enh)in the sample all have pseudobulges.A majority (69%) of paired SFGs with strong enhancement (having sSFR more than5 times the median of the control galaxies) have pseudobulges.The Spitzer data show that the pseudobulges in these galaxies are tightly linked to nuclear/circum-nuclear starbursts.Pseudobulge SFGs in S+S and in S+E pairs have significantly (>3σ) different sSFR enhancement,with the means of sSFR_(enh)=0.45±0.08 and-0.04±0.11respectively.We find a decrease in the sSFR enhancements with the density of the environment for SFGs with pseudobulges.Since a high fraction (5/11) of pseudobulge SFGs in S+E pairs are in rich groups/clusters (loca density N_(1Mpc)≥7),the dense environment might be the cause for their low s SFR_(enh).展开更多
Leveraging the high resolution,sensitivity,and wide frequency coverage of the Atacama Large Millimeter/submillimeter Array(ALMA),the QUARKS survey,standing for“Querying Underlying mechanisms of massive star formation...Leveraging the high resolution,sensitivity,and wide frequency coverage of the Atacama Large Millimeter/submillimeter Array(ALMA),the QUARKS survey,standing for“Querying Underlying mechanisms of massive star formation with ALMA-Resolved gas Kinematics and Structures”,is observing 139 massive starforming clumps at ALMA Band 6(λ~1.3 mm).This paper introduces the Atacama Compact Array(ACA)7 m data of the QUARKS survey,describing the ACA observations and data reduction.Combining multiwavelength data,we provide the first edition of QUARKS atlas,offering insights into the multiscale and multiphase interstellar medium in high-mass star formation.The ACA 1.3 mm catalog includes 207 continuum sources that are called ACA sources.Their gas kinetic temperatures are estimated using three formaldehyde transitions with a non-LTE radiation transfer model,and the mass and density are derived from a dust emission model.The ACA sources are massive(16–84 percentile values of 6–160 M_(⊙)),gravity-dominated(M∝R^(1.1))fragments within massive clumps,with supersonic turbulence(M>1)and embedded star-forming protoclusters.We find a linear correlation between the masses of the fragments and the massive clumps,with a ratio of 6%between the two.When considering fragments as representative of dense gas,the ratio indicates a dense gas fraction(DGF)of 6%,although with a wide scatter ranging from 1%to 10%.If we consider the QUARKS massive clumps to be what is observed at various scales,then the size-independent DGF indicates a self-similar fragmentation or collapsing mode in protocluster formation.With the ACA data over four orders of magnitude of luminosity-to-mass ratio(L/M),we find that the DGF increases significantly with L/M,which indicates clump evolutionary stage.We observed a limited fragmentation at the subclump scale,which can be explained by a dynamic global collapse process.展开更多
In this paper,we present a new gas-grain chemical code for interstellar clouds written in pure Python(GGCHEMPY(GGCHEMPY is available on https://github.com/JixingGE/GGCHEMPY)).By combining with the high-performance Pyt...In this paper,we present a new gas-grain chemical code for interstellar clouds written in pure Python(GGCHEMPY(GGCHEMPY is available on https://github.com/JixingGE/GGCHEMPY)).By combining with the high-performance Python compiler Numba,GGCHEMPY is as efficient as the Fortran-based version.With the Python features,flexible computational workflows and extensions become possible.As a showcase,GGCHEMPY is applied to study the general effects of three-dimensional projection on molecular distributions using a two-core system which can be easily extended for more complex cases.By comparing the molecular distribution differences between two overlapping cores and two merging cores,we summarized the typical chemical differences such as N2 H+,HC3 N,C2 S,H2 CO,HCN and C2 H,which can be used to interpret 3 D structures in molecular clouds.展开更多
We report the transit observations of the ultra-hot Jupiter WASP-121b using the Goodman High Throughput Spectrograph at the 4 m ground-based Southern Astrophysical Research Telescope,covering the wavelength range502-9...We report the transit observations of the ultra-hot Jupiter WASP-121b using the Goodman High Throughput Spectrograph at the 4 m ground-based Southern Astrophysical Research Telescope,covering the wavelength range502-900 nm.By dividing the target and reference star into 19 spectroscopic passbands and applying differential spectrophotometry,we derive spectroscopic transit light curves and fit them using a Gaussian process framework to determine transit depths for every passband.The obtained optical transmission spectrum shows a steep increased slope toward the blue wavelength,which seems to be too steep to be accounted for by Rayleigh scattering alone.We note that the transmission spectrum from this work and other works differ obviously from each other,which was pointed out previously by Wilson et al.as evidence for temporal atmospheric variation.We perform a free chemistry retrieval analysis on the optical transmission spectra from this work and the literature HST/WFC3 NIR spectrum.We determine TiO,VO and H_(2)O with abundances of-5.95_(-0.42)^(+0.47)dex,-6.72_(-1.79)^(+0.51)dex and-4.13_(-0.46)^(+0.63)dex,respectively.We compare the abundances of all three of these molecules derived from this work and previous works,and find that they are not consistent with each other,indicating the chemical compositions of the terminator region may change over long timescales.Future multi-epoch and high-precision transit observations are required to further confirm this phenomenon.We note that when combining the transmission spectra in the optical and in NIR in retrieval analysis,the abundances of V and VO,the NIR-to-optical offset and the cloud deck pressure may be coupled with each other.展开更多
We present optical luminosity functions(LFs) of galaxies in the0.1 g,0.1 r,0.1 i bands, calculated using data in40 deg2 sky area of the LAMOST Complete Spectroscopic Survey of Pointing Area(LaCoSSPAr) in the Southern ...We present optical luminosity functions(LFs) of galaxies in the0.1 g,0.1 r,0.1 i bands, calculated using data in40 deg2 sky area of the LAMOST Complete Spectroscopic Survey of Pointing Area(LaCoSSPAr) in the Southern Galactic Cap. Redshifts for galaxies brighter than r = 18.1 were obtained mainly with LAMOST. In each band, LFs derived using both parametric and non-parametric maximum likelihood methods agree well with each other. In the0.1 r band, our fitting parameters of the Schechter function are φ*=(1.65 ± 0.36) × 10-2 h3 Mpc-3, M*=-20.69 ± 0.06 mag and α =-1.12 ± 0.08,which agree with previous studies. Separate LFs are also derived for emission line galaxies and absorption line galaxies. The LFs of absorption line galaxies show a dip at0.1 r 18.5 and can be fitted well by a double-Gaussian function, suggesting a bimodality in passive galaxies.展开更多
The Stellar Abundances and Galactic Evolution Survey(SAGES)is a multi-band photometric survey focused on estimation of stellar atmospheric parameters and interstellar extinction.In this paper we have derived photonic ...The Stellar Abundances and Galactic Evolution Survey(SAGES)is a multi-band photometric survey focused on estimation of stellar atmospheric parameters and interstellar extinction.In this paper we have derived photonic passbands for the intermediate-band u and v filters of the SAGES photometric system.The derived photonic passbands have been compared with those of the u and v filters of the Stromgren and SkyMapper systems.Synthetic photometry based on the derived photonic passbands could reproduce the observations very well.We have also derived observed,model-free extinction coefficients for the SAGES u and v bands(as well as the Pan-STARRS grizy bands)using the“standard pair”method.The derived reddening coefficients have been compared with those predicted by the extinction laws.Variations of reddening coefficients with effective temperatures and color excesses of B–V given by Schlegel et al.(E(B-V)_(SFD))have been investigated.No obvious trends or significant variations with effective temperatures have been found,but reddening coefficients for all the colors exhibit declining trends with increasing E(B-V)_(SFD),with typical relative variations of twenty-some percent from E(B-V)_(SFD)~0 to 1.展开更多
Infrared(IR)spectral energy distribution(SED)is the major tracer of protoplanetary disks.It was recently proposed to use the near-to-mid IR(or K-24)SED slopeαdefined between 2 and 24μm as a potential quantitative tr...Infrared(IR)spectral energy distribution(SED)is the major tracer of protoplanetary disks.It was recently proposed to use the near-to-mid IR(or K-24)SED slopeαdefined between 2 and 24μm as a potential quantitative tracer of disk age.We critically examine the viability of this idea and confront it with additional statistics of IR luminosities and SED shapes.We point out that,because the statistical properties of most of the complicated physical factors involved in disk evolution are still poorly understood in a quantitative sense,the only viable way is to assume them to be random so that an idealized“average disk”can be defined,which allows theαhistogram to trace its age.We confirm that the statistics of the zeroth order(luminosity),first order(slopeα),and second order characteristics(concavity)of the observed K-24 SEDs indeed carry useful information upon the evolutionary processes of the“average disk”.We also stress that intrinsic diversities in K-24 SED shapes and luminosities are always large at the level of individual stars so that the application of the evolutionary path of the“average disk”to individual stars must be done with care.The data of most curves in plots are provided on GitHub(Disk-age package https://github.com/starage/disk-age/).展开更多
We have developed a novel method for co-adding multiple under-sampled images that combines the iteratively reweighted least squares and divide-and-conquer algorithms.Our approach not only allows for the anti-aliasing ...We have developed a novel method for co-adding multiple under-sampled images that combines the iteratively reweighted least squares and divide-and-conquer algorithms.Our approach not only allows for the anti-aliasing of the images but also enables Point-Spread Function(PSF)deconvolution,resulting in enhanced restoration of extended sources,the highest peak signal-to-noise ratio,and reduced ringing artefacts.To test our method,we conducted numerical simulations that replicated observation runs of the China Space Station Telescope/the VLT Survey Telescope(VST)and compared our results to those obtained using previous algorithms.The simulation showed that our method outperforms previous approaches in several ways,such as restoring the profile of extended sources and minimizing ringing artefacts.Additionally,because our method relies on the inherent advantages of least squares fitting,it is more versatile and does not depend on the local uniformity hypothesis for the PSF.However,the new method consumes much more computation than the other approaches.展开更多
Realtime trigger and localization of bursts are the key functions of GECAM,an all-sky gamma-ray monitor launched on 2020 December 10.We developed a multifunctional trigger and localization software operating in the CP...Realtime trigger and localization of bursts are the key functions of GECAM,an all-sky gamma-ray monitor launched on 2020 December 10.We developed a multifunctional trigger and localization software operating in the CPU of the GECAM Electronic Box.This onboard software has the following features:high trigger efficiency for real celestial bursts with a suppression of false triggers caused by charged particle bursts and background fluctuation,dedicated localization algorithm optimized for both short and long bursts,and low time latency of the trigger information which is downlinked through the Global Short Message Communication service of the global BeiDou navigation system.This paper provides a detailed description of the design and development of the trigger and localization software system for GECAM.It covers the general design,workflow,the main functions,and the algorithms used in the system.The paper also includes on-ground trigger tests using simulated gamma-ray bursts generated by a dedicated X-ray tube,as well as an overview of the performance for real celestial bursts during its in-orbit operation.展开更多
This paper presents an overview of the QUARKS survey,which stands for Querying Underlying mechanisms of massive star formation with ALMA-Resolved gas Kinematics and Structures."The QUARKS survey is observing139 m...This paper presents an overview of the QUARKS survey,which stands for Querying Underlying mechanisms of massive star formation with ALMA-Resolved gas Kinematics and Structures."The QUARKS survey is observing139 massive clumps covered by 156 pointings at Atacama Large Millimeter/submillimeter Array(ALMA)Band 6(λ~1.3 mm).In conjunction with data obtained from the ALMA-ATOMS survey at Band 3(λ~3 mm),QUARKS aims to carry out an unbiased statistical investigation of massive star formation process within protoclusters down to a scale of 1000 au.This overview paper describes the observations and data reduction of the QUARKS survey,and gives a first look at an exemplar source,the mini-starburst Sgr B2(M).The wide-b and width(7.5 GHz)and high-angular-resolution(~0."3)observations of the QUARKS survey allow for the resolution of much more compact cores than those could be done by the ATOMS survey,and to detect previously unrevealed fainter filamentary structures.The spectral windows cover transitions of species including CO,SO,N_(2)D^(+),SiO,H_(30)α,H_(2)CO,CH_(3)CN,and many other complex organic molecules,tracing gas components with different temperatures and spatial extents.QUARKS aims to deepen our understanding of several scientific topics of massive star formation,such as the mass transport within protoclusters by(hub-)filamentary structures,the existence of massive starless cores,the physical and chemical properties of dense cores within protoclusters,and the feedback from already formed high-mass young protostars.展开更多
Sky surveys represent one of the most important efforts to improve developments in astrophysics,especially when using new photometric bands. We are performing the Stellar Abundance and Galactic Evolution(SAGE) survey ...Sky surveys represent one of the most important efforts to improve developments in astrophysics,especially when using new photometric bands. We are performing the Stellar Abundance and Galactic Evolution(SAGE) survey with a self-designed SAGE photometric system, which is composed of eight photometric bands. The project mainly aims to study the stellar atmospheric parameters of ~0.5 billion stars in ~12 000 deg2 of the northern sky, which mainly focuses on Galactic astronomy, as well as some aspects of extragalactic astronomy. This work introduces the detailed data reduction process of the test field NGC 6791, including the data reduction of single-exposure images and stacked multi-exposure images, and properties of the final catalog.展开更多
To investigate a huge sample of data related to the Stellar Abundance and Galactic Evolution(SAGE) survey in more detail, we are performing a northern sky photometric survey named SAGES with the SAGE photometric syste...To investigate a huge sample of data related to the Stellar Abundance and Galactic Evolution(SAGE) survey in more detail, we are performing a northern sky photometric survey named SAGES with the SAGE photometric system.This system consists of eight filters: Str?mgren-u, SAGE-v, SDSS g, r, i, DDO-51, Hαwideand Hαnarrow, including three Sloan broadband filters, three intermediateband filters, two narrow-band filters and one newly-designed narrow-band filter.SAGES covers~12 000 square degrees of the northern sky with δ >-5°, excluding the Galactic disk(|b| < 10°) and the sky area 12 h <RA <18 h.The photometric detection limit depth at signal-to-noise ratio 5σ can be as deep as V~20 mag.SAGES will produce a photometric catalog with uniform depth for~500 million stars with atmospheric parameters including effective temperature Teff, surface gravity log g and metallicity[Fe/H], as well as interstellar extinction to each individual target.In this work, we will briefly introduce the SAGE photometric system, the SAGE survey and a preliminary test field of the open cluster NGC 6791 and its surroundings.展开更多
It is expected that ongoing and future space-borne planet survey missions including Transiting Exoplanet Survey Satellite(TESS),PLATO and Earth 2.0 will detect thousands of small to medium-sized planets via the transi...It is expected that ongoing and future space-borne planet survey missions including Transiting Exoplanet Survey Satellite(TESS),PLATO and Earth 2.0 will detect thousands of small to medium-sized planets via the transit technique,including over a hundred habitable terrestrial rocky planets.To conduct a detailed study of these terrestrial planets,particularly the cool ones with wide orbits,the exoplanet community has proposed various follow-up missions.The currently proposed European Space Agency mission Ariel is the first step for this purpose,and it is capable of characterization of planets down to warm super-Earths mainly using transmission spectroscopy.The NASA Large Ultraviolet/Optical/Infrared Surveyor mission proposed in the Astro2020 Decadal Survey white paper will endeavor to further identify habitable rocky planets,and is expected to launch around 2045.In the meanwhile,China is funding a concept study of a 6 m class space telescope named Tianlin(a UV/Opt/NIR large aperture space telescope)that aims to start its operation within the next 10–15 yr and last for 5+yr.Tianlin will be primarily aimed at the discovery and characterization of rocky planets in the habitable zones around nearby stars and to search for potential biosignatures mainly using the direct imaging method.Transmission and emission spectroscopy at moderate to high resolution will be carried out as well on a population of exoplanets to strengthen the understanding of the formation and evolution of exoplanets.It will also be utilized to perform in-depth studies of the cosmic web and early galaxies,and constrain the nature of dark matter and dark energy.We describe briefly the primary scientific motivations and main technical considerations based on our preliminary simulation results.We find that a monolithic off-axis space telescope with primary mirror diameter larger than 6 m equipped with a high contrast coronagraph can identify water in the atmosphere of a habitable-zone Earth-like planet around a Sunlike star.More simulations for the detectability of other key biosignatures including O_(3),O_(2),CH_(4)and chlorophyll are coming.展开更多
The Spitzer Extended Deep Survey(SEDS)as a deep and wide mid-infrared(MIR)survey project provides a sample of 500000+sources spreading 1.46 square degree and a depth of 26 AB mag(3σ).Combining with the previous avail...The Spitzer Extended Deep Survey(SEDS)as a deep and wide mid-infrared(MIR)survey project provides a sample of 500000+sources spreading 1.46 square degree and a depth of 26 AB mag(3σ).Combining with the previous available data,we build a PSF-matched multi-wavelength photometry catalog from u band to 8μm.We fit the SEDS galaxies spectral energy distributions by the local galaxy templates.The results show that the SEDS galaxy can be fitted well,indicating the high redshift galaxy(z~1)shares the same templates with the local galaxies.This study would facilitate the further study of the galaxy luminosity and high redshift mass function.展开更多
Estimating and identifying friction are important aspects of simulating a mechanical drive system. Accurate friction modeling helps to improve a telescope's performance. However, the friction conditions inside are...Estimating and identifying friction are important aspects of simulating a mechanical drive system. Accurate friction modeling helps to improve a telescope's performance. However, the friction conditions inside are complex and hard to measure. We did simulations with mathematical transfer functions for the Leighton 10 m Telescope and employed a polyline model to identify sources of friction. We made a two-stage model for the Leighton 10 m Telescope. Based on measurements of the motor's currents and speeds, we constructed a curve containing the friction information of the transmission elements. We simulated the system using a step function input under many combinations of friction parameters. By comparing simulation results with the measured ones, we determined the various friction components. This model accurately reproduced the telescope performance including the nonlinearities.展开更多
We report the discovery of four new open clusters(named QC 1,QC 2,QC 3 and QC 4)in the direction of Cygnus Cloud and select their members based on five astrometric parameters(l,b,ω,μα*,μδ)of Gaia DR2.We also deri...We report the discovery of four new open clusters(named QC 1,QC 2,QC 3 and QC 4)in the direction of Cygnus Cloud and select their members based on five astrometric parameters(l,b,ω,μα*,μδ)of Gaia DR2.We also derive their astrophysical parameters for each new cluster.Structure parameters are generated by fitting the radial density distribution with a King’s profile.Using solar metallicity,we performed isochrone-fitting on their purified color-magnitude diagrams(CMDs)to derive the age of the clusters.The known cluster NGC 7062 in an adjacent area is chosen to verify our identification process.The estimated distance,reddening and age of NGC 7062 are in good agreement with the literature.展开更多
How low surface brightness galaxies(LSBGs)form stars and assemble stellar mass is one of the most important questions related to understanding the LSBG population.We select a sample of 381 HI bright LSBGs with both fa...How low surface brightness galaxies(LSBGs)form stars and assemble stellar mass is one of the most important questions related to understanding the LSBG population.We select a sample of 381 HI bright LSBGs with both far ultraviolet(FUV)and near infrared(NIR)observations to investigate the star formation rate(SFR)and stellar mass scales,and the growth mode.We measure the FUV and NIR radii of our sample,which represent the star-forming and stellar mass distribution scales respectively.We also compare the FUV and H band radius-stellar mass relation with archival data,to identify the SFR and stellar mass structure difference between the LSBG population and other galaxies.Since galaxy HI mass has a tight correlation with the HI radius,we can also compare the HI and FUV radii to understand the distribution of HI gas and star formation activities.Our results show that most of the HI selected LSBGs have extended star formation structure.The stellar mass distribution of LSBGs may have a similar structure to disk galaxies at the same stellar mass bins,but the star-forming activity of LSBGs happens at a larger radius than the high surface density galaxies,which may help to identify the LSBG sample from the wide-field deep u band image survey.The HI is also distributed at larger radii,implying a steeper(or not)Kennicutt-Schmidt relation for LSBGs.展开更多
We report here Atacama Large Millimeter/submillimeter Array(ALMA)N2H+(1-0)images of the Orion Molecular Cloud 2 and 3(OMC-2/3)with high angular resolution(3"or 1200 au)and high spatial dynamic range.Combining a d...We report here Atacama Large Millimeter/submillimeter Array(ALMA)N2H+(1-0)images of the Orion Molecular Cloud 2 and 3(OMC-2/3)with high angular resolution(3"or 1200 au)and high spatial dynamic range.Combining a dataset from the ALMA main array,Atacama Compact Array(ACA),Nobeyama 45-m Telescope and Very Large Array(VLA)(providing temperature measurement on matching scales),we find that most of the dense gas in OMC-2/3 is subsonic(σQNT/cs=0.62)with a mean line width(△v)of 0.39 kms-1 full width at half maximum(FWHM).This is markedly different from the majority of previous observations of massive star-forming regions.In contrast,line widths from the Nobeyama Telescope are transonic at 0.69 km s-1(σNT/cs=1.08).We demonstrated that the larger line widths obtained by the single-dish telescope arose from unresolved sub-structures within their respective beams.The dispersions from larger scalesσls(as traced by the Nobeyama Telescope)can be decomposed into three components such thatσls2=σss2+σbm2+σrd2,where small-scaleσss is the line dispersion of each ALMA beam,bulk motionσbm is dispersion between peak velocity of each ALMA beam andσrd is the residual dispersion.Such decomposition,though purely empirical,appears to be robust throughout our data cubes.Apparent supersonic line widths,commonly found in massive molecular clouds,are thus likely due to the effect of poor spatial resolution.The observed non-thermal line dispersion(sometimes referred to as’turbulence’)transits from supersonic to subsonic at~0.05 pc scales in the OMC-2/3 region.Such transition could be commonly found with sufficient spatial(not just angular)resolution,even in regions with massive young clusters,such as the Orion molecular clouds studied here.展开更多
We report the discovery of year-scale X-ray variation in the nuclear region of the M87 by reanalyze the eight Chandra observations from 2007 to 2008. The X-ray spectra are fitted and decomposed into disk and flaring c...We report the discovery of year-scale X-ray variation in the nuclear region of the M87 by reanalyze the eight Chandra observations from 2007 to 2008. The X-ray spectra are fitted and decomposed into disk and flaring components. This year-scale X-ray variability can be explained quite well by a simple clumpy accretion model. We conclude that the central super-massive black hole of M87 was accreting a cloud of ~ 0.5 M⊙at that time.展开更多
We investigated the evolutionary stages and disk properties of 211 young stellar objects(YSOs) across the Perseus cloud by modeling their broadband optical to mid-infrared(IR) spectral energy distribution(SED). ...We investigated the evolutionary stages and disk properties of 211 young stellar objects(YSOs) across the Perseus cloud by modeling their broadband optical to mid-infrared(IR) spectral energy distribution(SED). Our optical gri photometry data were obtained from the recently finished Purple Mountain Observatory Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center(XSTPS-GAC).About 81% of our sample fall into the Stage II phase which is characterized by having optically thick disks, while 14% into the Stage I phase characterized by having significant infalling envelopes, and the remaining 5% into the Stage Ⅲ phase characterized by having optically thin disks. The median stellar age and mass of the Perseus YSOs are 3.1 Myr and 0.3 M⊙ respectively. By exploring the relationships among the turnoff wave bands λturnoff(longward of which significant IR excesses above the stellar photosphere are observed), the excess spectral index αexcess as determined for λ 〉 λturnoff, and the disk inner radius Rin(determined from SED modeling) for YSOs at different evolutionary stages, we found that the median and standard deviation of αexcess for YSOs with optically thick disks tend to increase withλturnoff, especially at λturnoff ≥5.8 μm, whereas the median fractional dust luminosities Ldust/L★ tend to decrease with increasing λturnoff. This points to an inside-out process of disk clearing for small dust grains. Moreover, a positive correlation between αexcess and Rin was found at α〉excess ~ 0 and R〉in~ 10 × the dust sublimation radius Rsub, irrespective of λturnoff, Ldust/L★ and disk flaring. This suggests that the outer disk flaring either does not evolve synchronously with the inside-out disk clearing of small dust grains or has little appreciable influence on the spectral slopes at λ〈~ 24 μm. About 23% of our YSO disks are classified as transitional disks, which haveλturnoff ≥ 5.8 μm and Ldust/L★ 〉 10-3. The transitional disks and full disks occupy distinctly different regions on the Ldust/L★ vs. αexcess diagram. Taking Ldust/L★ as an approximate discriminator of disks with(〉0.1) and without(〈0.1) considerable accretion activity, we found that 65% and 35% of the transitional disks may be consistent with being dominantly cleared by photoevaporation and dynamical interaction with giant planets respectively. None of our transitional disks have αexcess(〈0.0) or Ldust/L★(〉0.1) values that would otherwise be suggestive of disk clearing dominanted by grain growth.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)No.11873055 and No.11933003sponsored(in part)by the Chinese Academy of Sciences(CAS)through a grant to the CAS South America Center for Astronomy(CASSACA)+4 种基金support from project PID2020-114414GB-100,financed by MCIN/AEI/10.13039/501100011033the Junta de Andaluciaía(Spain)grant FQM108support by the National Key R&D Program of China No.2017YFA0402600the National Natural Science Foundation of China(NSFC)grant Nos.11890692,12133008,and 12221003China Manned Space Project No.CMS-CSST2021-A04。
文摘We present a study of star-forming galaxies (SFGs) with pseudobulges (bulges with Sérsic index n<2) in a loca close major-merger galaxy pair sample (H-KPAIR).With data from new aperture photometries in the optical and near-infrared bands (aperture size of 7 kpc) and from the literature,we find that the mean Age of central stellar populations in Spirals with pseudobulges is consistent with that of disky galaxies and is nearly constant against the bulge-to-total ratio (B/T).Paired Spirals have a slightly lower fraction of pure disk galaxies (B/T≤0.1) than their counterparts in the control sample.Compared to SFGs with classical bulges,those with pseudobulges have a higher (>2σ) mean of specific star formation rate (sSFR) enhancement (sSFR_(enh)=0.33±0.07 versus sSFR_(enh)=0.12±0.06) and broader scatter (by~1 dex).The eight SFGs that have the highest sSFR_(enh)in the sample all have pseudobulges.A majority (69%) of paired SFGs with strong enhancement (having sSFR more than5 times the median of the control galaxies) have pseudobulges.The Spitzer data show that the pseudobulges in these galaxies are tightly linked to nuclear/circum-nuclear starbursts.Pseudobulge SFGs in S+S and in S+E pairs have significantly (>3σ) different sSFR enhancement,with the means of sSFR_(enh)=0.45±0.08 and-0.04±0.11respectively.We find a decrease in the sSFR enhancements with the density of the environment for SFGs with pseudobulges.Since a high fraction (5/11) of pseudobulge SFGs in S+E pairs are in rich groups/clusters (loca density N_(1Mpc)≥7),the dense environment might be the cause for their low s SFR_(enh).
基金upported by the National Natural Science Foundation of China(NSFC,Grant No.12033005)the National Key R&D Program of China(No.2022YFA1603102)+2 种基金the China Manned Space Project(CMS-CSST-2021-A09,CMS-CSST-2021-B06)the China-Chile Joint Research Fund(CCJRF No.2211)support from the Tianchi Talent Program of Xinjiang Uygur Autonomous Region。
文摘Leveraging the high resolution,sensitivity,and wide frequency coverage of the Atacama Large Millimeter/submillimeter Array(ALMA),the QUARKS survey,standing for“Querying Underlying mechanisms of massive star formation with ALMA-Resolved gas Kinematics and Structures”,is observing 139 massive starforming clumps at ALMA Band 6(λ~1.3 mm).This paper introduces the Atacama Compact Array(ACA)7 m data of the QUARKS survey,describing the ACA observations and data reduction.Combining multiwavelength data,we provide the first edition of QUARKS atlas,offering insights into the multiscale and multiphase interstellar medium in high-mass star formation.The ACA 1.3 mm catalog includes 207 continuum sources that are called ACA sources.Their gas kinetic temperatures are estimated using three formaldehyde transitions with a non-LTE radiation transfer model,and the mass and density are derived from a dust emission model.The ACA sources are massive(16–84 percentile values of 6–160 M_(⊙)),gravity-dominated(M∝R^(1.1))fragments within massive clumps,with supersonic turbulence(M>1)and embedded star-forming protoclusters.We find a linear correlation between the masses of the fragments and the massive clumps,with a ratio of 6%between the two.When considering fragments as representative of dense gas,the ratio indicates a dense gas fraction(DGF)of 6%,although with a wide scatter ranging from 1%to 10%.If we consider the QUARKS massive clumps to be what is observed at various scales,then the size-independent DGF indicates a self-similar fragmentation or collapsing mode in protocluster formation.With the ACA data over four orders of magnitude of luminosity-to-mass ratio(L/M),we find that the DGF increases significantly with L/M,which indicates clump evolutionary stage.We observed a limited fragmentation at the subclump scale,which can be explained by a dynamic global collapse process.
文摘In this paper,we present a new gas-grain chemical code for interstellar clouds written in pure Python(GGCHEMPY(GGCHEMPY is available on https://github.com/JixingGE/GGCHEMPY)).By combining with the high-performance Python compiler Numba,GGCHEMPY is as efficient as the Fortran-based version.With the Python features,flexible computational workflows and extensions become possible.As a showcase,GGCHEMPY is applied to study the general effects of three-dimensional projection on molecular distributions using a two-core system which can be easily extended for more complex cases.By comparing the molecular distribution differences between two overlapping cores and two merging cores,we summarized the typical chemical differences such as N2 H+,HC3 N,C2 S,H2 CO,HCN and C2 H,which can be used to interpret 3 D structures in molecular clouds.
基金supported by the National Key R&D Program of China Nos.2019YFA0405102 and 2019YFA0405502the National Natural Science Foundation of China(NSFC,Grant Nos.42075123,62127901,11988101,42005098,and 12073044)+1 种基金supported by the China Manned Space Project with No.CMS-CSST-2021-B12supported by the Chinese Academy of Sciences(CAS),through a grant to the CAS South America Center for Astronomy(CASSACA)in Santiago,Chile。
文摘We report the transit observations of the ultra-hot Jupiter WASP-121b using the Goodman High Throughput Spectrograph at the 4 m ground-based Southern Astrophysical Research Telescope,covering the wavelength range502-900 nm.By dividing the target and reference star into 19 spectroscopic passbands and applying differential spectrophotometry,we derive spectroscopic transit light curves and fit them using a Gaussian process framework to determine transit depths for every passband.The obtained optical transmission spectrum shows a steep increased slope toward the blue wavelength,which seems to be too steep to be accounted for by Rayleigh scattering alone.We note that the transmission spectrum from this work and other works differ obviously from each other,which was pointed out previously by Wilson et al.as evidence for temporal atmospheric variation.We perform a free chemistry retrieval analysis on the optical transmission spectra from this work and the literature HST/WFC3 NIR spectrum.We determine TiO,VO and H_(2)O with abundances of-5.95_(-0.42)^(+0.47)dex,-6.72_(-1.79)^(+0.51)dex and-4.13_(-0.46)^(+0.63)dex,respectively.We compare the abundances of all three of these molecules derived from this work and previous works,and find that they are not consistent with each other,indicating the chemical compositions of the terminator region may change over long timescales.Future multi-epoch and high-precision transit observations are required to further confirm this phenomenon.We note that when combining the transmission spectra in the optical and in NIR in retrieval analysis,the abundances of V and VO,the NIR-to-optical offset and the cloud deck pressure may be coupled with each other.
基金project is supported by the National Key R&D Program of China (2017YFA0402704)the National Natural Science Foundation of China (Grant Nos. 11733006 and U1531245)+2 种基金the National Science Foundation for Young Scientists of China (Grant No. 11603058)the Guo Shou Jing Telescope Spectroscopic Survey Key Projectssupport by the National Natural Science Foundation of China (Y811251N01)
文摘We present optical luminosity functions(LFs) of galaxies in the0.1 g,0.1 r,0.1 i bands, calculated using data in40 deg2 sky area of the LAMOST Complete Spectroscopic Survey of Pointing Area(LaCoSSPAr) in the Southern Galactic Cap. Redshifts for galaxies brighter than r = 18.1 were obtained mainly with LAMOST. In each band, LFs derived using both parametric and non-parametric maximum likelihood methods agree well with each other. In the0.1 r band, our fitting parameters of the Schechter function are φ*=(1.65 ± 0.36) × 10-2 h3 Mpc-3, M*=-20.69 ± 0.06 mag and α =-1.12 ± 0.08,which agree with previous studies. Separate LFs are also derived for emission line galaxies and absorption line galaxies. The LFs of absorption line galaxies show a dip at0.1 r 18.5 and can be fitted well by a double-Gaussian function, suggesting a bimodality in passive galaxies.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.11988101,12090044,12090040,11673030,42075123 and 62127901)the National Key R&D Program of China under grant No.2019YFA0405502。
文摘The Stellar Abundances and Galactic Evolution Survey(SAGES)is a multi-band photometric survey focused on estimation of stellar atmospheric parameters and interstellar extinction.In this paper we have derived photonic passbands for the intermediate-band u and v filters of the SAGES photometric system.The derived photonic passbands have been compared with those of the u and v filters of the Stromgren and SkyMapper systems.Synthetic photometry based on the derived photonic passbands could reproduce the observations very well.We have also derived observed,model-free extinction coefficients for the SAGES u and v bands(as well as the Pan-STARRS grizy bands)using the“standard pair”method.The derived reddening coefficients have been compared with those predicted by the extinction laws.Variations of reddening coefficients with effective temperatures and color excesses of B–V given by Schlegel et al.(E(B-V)_(SFD))have been investigated.No obvious trends or significant variations with effective temperatures have been found,but reddening coefficients for all the colors exhibit declining trends with increasing E(B-V)_(SFD),with typical relative variations of twenty-some percent from E(B-V)_(SFD)~0 to 1.
基金supported by the Natural Science Foundation of Yunnan Province(No.202201 BC070003)supported by the ANID FONDECYT Postdoctoral program No.3220029+2 种基金support by ANID,—Millennium Science Initiative Program—NCN19_171sponsored(in part)by the Chinese Academy of Sciences(CAS)the CAS South America Center for Astronomy(CASSACA)in Santiago,Chile.
文摘Infrared(IR)spectral energy distribution(SED)is the major tracer of protoplanetary disks.It was recently proposed to use the near-to-mid IR(or K-24)SED slopeαdefined between 2 and 24μm as a potential quantitative tracer of disk age.We critically examine the viability of this idea and confront it with additional statistics of IR luminosities and SED shapes.We point out that,because the statistical properties of most of the complicated physical factors involved in disk evolution are still poorly understood in a quantitative sense,the only viable way is to assume them to be random so that an idealized“average disk”can be defined,which allows theαhistogram to trace its age.We confirm that the statistics of the zeroth order(luminosity),first order(slopeα),and second order characteristics(concavity)of the observed K-24 SEDs indeed carry useful information upon the evolutionary processes of the“average disk”.We also stress that intrinsic diversities in K-24 SED shapes and luminosities are always large at the level of individual stars so that the application of the evolutionary path of the“average disk”to individual stars must be done with care.The data of most curves in plots are provided on GitHub(Disk-age package https://github.com/starage/disk-age/).
基金supported by the GHfund A(202302017475)supported by the Foundation for Distinguished Young Scholars of Jiangsu Province(No.BK20140050)+5 种基金the National Natural Science Foundation of China(Nos.11973070,11333008,11273061,11825303,and 11673065)the China Manned Space Project with No.CMS-CSST-2021-A01,CMSCSST-2021-A03,CMS-CSST-2021-B01the Joint Funds of the National Natural Science Foundation of China(No.U1931210)the support from Key Research Program of Frontier Sciences,CAS,grant No.ZDBS-LY-7013Program of Shanghai Academic/Technology Research Leaderthe support from the science research grants from the China Manned Space Project with CMS-CSST-2021-A04,CMS-CSST-2021-A07。
文摘We have developed a novel method for co-adding multiple under-sampled images that combines the iteratively reweighted least squares and divide-and-conquer algorithms.Our approach not only allows for the anti-aliasing of the images but also enables Point-Spread Function(PSF)deconvolution,resulting in enhanced restoration of extended sources,the highest peak signal-to-noise ratio,and reduced ringing artefacts.To test our method,we conducted numerical simulations that replicated observation runs of the China Space Station Telescope/the VLT Survey Telescope(VST)and compared our results to those obtained using previous algorithms.The simulation showed that our method outperforms previous approaches in several ways,such as restoring the profile of extended sources and minimizing ringing artefacts.Additionally,because our method relies on the inherent advantages of least squares fitting,it is more versatile and does not depend on the local uniformity hypothesis for the PSF.However,the new method consumes much more computation than the other approaches.
基金supported by the Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences,the support from the Strategic Priority Research Program on Space Science(grant Nos.XDA15360300,XDA15360000,XDA15360102,XDA15052700 and E02212A02S)of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(NSFC,Grant No.12173038)and BeiDou navigation system。
文摘Realtime trigger and localization of bursts are the key functions of GECAM,an all-sky gamma-ray monitor launched on 2020 December 10.We developed a multifunctional trigger and localization software operating in the CPU of the GECAM Electronic Box.This onboard software has the following features:high trigger efficiency for real celestial bursts with a suppression of false triggers caused by charged particle bursts and background fluctuation,dedicated localization algorithm optimized for both short and long bursts,and low time latency of the trigger information which is downlinked through the Global Short Message Communication service of the global BeiDou navigation system.This paper provides a detailed description of the design and development of the trigger and localization software system for GECAM.It covers the general design,workflow,the main functions,and the algorithms used in the system.The paper also includes on-ground trigger tests using simulated gamma-ray bursts generated by a dedicated X-ray tube,as well as an overview of the performance for real celestial bursts during its in-orbit operation.
基金supported by the National Key R&D Program of China(No.2022YFA1603100)the National Natural Science Foundation of China(NSFC)through grants Nos.12203086,12033005,12073061,12122307,and 12103045+12 种基金supported by CPSF No.2022M723278the international partnership program of Chinese Academy of Sciences through grant No.114231K YSB20200009Shanghai Pujiang Program 20PJ1415500the science research grants from the China Manned Space Project with no.CMS-CSST-2021-B06Yunnan Fundamental Research Project(grant No.202301AT070118)sponsored by Natural Science Foundation of Shanghai(No.23ZR1482100)support from the National Natural Science Foundation of China(NSFC)through grants Nos.12273090&12322305the Chinese Academy of Sciences(CAS)‘Light of West China’Program(No.xbzgzdsys-202212)support from the ANID BASAL project FB210003support from the Fondecyt Regular(project code 1220610)partially supported by a Grant-in-Aid for Scientific Research(KAKENHI Number JP22H01271 and JP23H01221)of JSPSsupported by JSPS KAKENHI(grant No.JP20H05645)sponsored(in part)by the Chinese Academy of Sciences(CAS),through a grant to the CAS South America Center for Astronomy(CASSACA)in Santiago,Chile。
文摘This paper presents an overview of the QUARKS survey,which stands for Querying Underlying mechanisms of massive star formation with ALMA-Resolved gas Kinematics and Structures."The QUARKS survey is observing139 massive clumps covered by 156 pointings at Atacama Large Millimeter/submillimeter Array(ALMA)Band 6(λ~1.3 mm).In conjunction with data obtained from the ALMA-ATOMS survey at Band 3(λ~3 mm),QUARKS aims to carry out an unbiased statistical investigation of massive star formation process within protoclusters down to a scale of 1000 au.This overview paper describes the observations and data reduction of the QUARKS survey,and gives a first look at an exemplar source,the mini-starburst Sgr B2(M).The wide-b and width(7.5 GHz)and high-angular-resolution(~0."3)observations of the QUARKS survey allow for the resolution of much more compact cores than those could be done by the ATOMS survey,and to detect previously unrevealed fainter filamentary structures.The spectral windows cover transitions of species including CO,SO,N_(2)D^(+),SiO,H_(30)α,H_(2)CO,CH_(3)CN,and many other complex organic molecules,tracing gas components with different temperatures and spatial extents.QUARKS aims to deepen our understanding of several scientific topics of massive star formation,such as the mass transport within protoclusters by(hub-)filamentary structures,the existence of massive starless cores,the physical and chemical properties of dense cores within protoclusters,and the feedback from already formed high-mass young protostars.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11373003, 11673030 and U1631102)the National Key Basic Research Program of China (2015CB857002)the National Program on Key Research and Development Project (2016YFA0400804)
文摘Sky surveys represent one of the most important efforts to improve developments in astrophysics,especially when using new photometric bands. We are performing the Stellar Abundance and Galactic Evolution(SAGE) survey with a self-designed SAGE photometric system, which is composed of eight photometric bands. The project mainly aims to study the stellar atmospheric parameters of ~0.5 billion stars in ~12 000 deg2 of the northern sky, which mainly focuses on Galactic astronomy, as well as some aspects of extragalactic astronomy. This work introduces the detailed data reduction process of the test field NGC 6791, including the data reduction of single-exposure images and stacked multi-exposure images, and properties of the final catalog.
基金supported by the National Natural Science Foundation of China (Grant Nos.11373003, 11673030 and U1631102)the National Key Basic Research Program of China (2015CB857002)National Program on Key Research and Development Project (2016YFA0400804)
文摘To investigate a huge sample of data related to the Stellar Abundance and Galactic Evolution(SAGE) survey in more detail, we are performing a northern sky photometric survey named SAGES with the SAGE photometric system.This system consists of eight filters: Str?mgren-u, SAGE-v, SDSS g, r, i, DDO-51, Hαwideand Hαnarrow, including three Sloan broadband filters, three intermediateband filters, two narrow-band filters and one newly-designed narrow-band filter.SAGES covers~12 000 square degrees of the northern sky with δ >-5°, excluding the Galactic disk(|b| < 10°) and the sky area 12 h <RA <18 h.The photometric detection limit depth at signal-to-noise ratio 5σ can be as deep as V~20 mag.SAGES will produce a photometric catalog with uniform depth for~500 million stars with atmospheric parameters including effective temperature Teff, surface gravity log g and metallicity[Fe/H], as well as interstellar extinction to each individual target.In this work, we will briefly introduce the SAGE photometric system, the SAGE survey and a preliminary test field of the open cluster NGC 6791 and its surroundings.
基金supported by the National Natural Science Foundation of China(NSFC,grants Nos.62127901,11988101,42075123 and 42005098)the National Key R&D Program of China No.2019YFA0405102+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(CAS),grant Nos.XDA15016200 and XDA15072113supported by the Chinese Academy of Sciences(CAS),through a grant to the CAS South America Center for Astronomy(CASSACA)in Santiago,Chilethe science research grants from the China Manned Space Project with No.CMS-CSST-2021-B12.
文摘It is expected that ongoing and future space-borne planet survey missions including Transiting Exoplanet Survey Satellite(TESS),PLATO and Earth 2.0 will detect thousands of small to medium-sized planets via the transit technique,including over a hundred habitable terrestrial rocky planets.To conduct a detailed study of these terrestrial planets,particularly the cool ones with wide orbits,the exoplanet community has proposed various follow-up missions.The currently proposed European Space Agency mission Ariel is the first step for this purpose,and it is capable of characterization of planets down to warm super-Earths mainly using transmission spectroscopy.The NASA Large Ultraviolet/Optical/Infrared Surveyor mission proposed in the Astro2020 Decadal Survey white paper will endeavor to further identify habitable rocky planets,and is expected to launch around 2045.In the meanwhile,China is funding a concept study of a 6 m class space telescope named Tianlin(a UV/Opt/NIR large aperture space telescope)that aims to start its operation within the next 10–15 yr and last for 5+yr.Tianlin will be primarily aimed at the discovery and characterization of rocky planets in the habitable zones around nearby stars and to search for potential biosignatures mainly using the direct imaging method.Transmission and emission spectroscopy at moderate to high resolution will be carried out as well on a population of exoplanets to strengthen the understanding of the formation and evolution of exoplanets.It will also be utilized to perform in-depth studies of the cosmic web and early galaxies,and constrain the nature of dark matter and dark energy.We describe briefly the primary scientific motivations and main technical considerations based on our preliminary simulation results.We find that a monolithic off-axis space telescope with primary mirror diameter larger than 6 m equipped with a high contrast coronagraph can identify water in the atmosphere of a habitable-zone Earth-like planet around a Sunlike star.More simulations for the detectability of other key biosignatures including O_(3),O_(2),CH_(4)and chlorophyll are coming.
基金supported by the National Key R&D Program of China(Grant No.2017YFA0402704)the National Natural Science Foundation of China(Grant Nos.11803044 and 11933003)+2 种基金the China Manned Space Project with No.CMSCSST-2021-A05sponsored(in part)by the Chinese Academy of Sciences(CAS)through a grant to the CAS South America Center for Astronomy(CASSACA)。
文摘The Spitzer Extended Deep Survey(SEDS)as a deep and wide mid-infrared(MIR)survey project provides a sample of 500000+sources spreading 1.46 square degree and a depth of 26 AB mag(3σ).Combining with the previous available data,we build a PSF-matched multi-wavelength photometry catalog from u band to 8μm.We fit the SEDS galaxies spectral energy distributions by the local galaxy templates.The results show that the SEDS galaxy can be fitted well,indicating the high redshift galaxy(z~1)shares the same templates with the local galaxies.This study would facilitate the further study of the galaxy luminosity and high redshift mass function.
基金sponsored (in part) by the Chinese Academy of Sciences (CAS) through a grant to the CAS South America Center for Astronomy (CASSACA) in Santiago, Chile。
文摘Estimating and identifying friction are important aspects of simulating a mechanical drive system. Accurate friction modeling helps to improve a telescope's performance. However, the friction conditions inside are complex and hard to measure. We did simulations with mathematical transfer functions for the Leighton 10 m Telescope and employed a polyline model to identify sources of friction. We made a two-stage model for the Leighton 10 m Telescope. Based on measurements of the motor's currents and speeds, we constructed a curve containing the friction information of the transmission elements. We simulated the system using a step function input under many combinations of friction parameters. By comparing simulation results with the measured ones, we determined the various friction components. This model accurately reproduced the telescope performance including the nonlinearities.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.11703019China West Normal University Grants 17C053,17YC507 and 16E018+1 种基金support from NSFC under Grant No.11661161016the NSFC under Grant No.U1731129。
文摘We report the discovery of four new open clusters(named QC 1,QC 2,QC 3 and QC 4)in the direction of Cygnus Cloud and select their members based on five astrometric parameters(l,b,ω,μα*,μδ)of Gaia DR2.We also derive their astrophysical parameters for each new cluster.Structure parameters are generated by fitting the radial density distribution with a King’s profile.Using solar metallicity,we performed isochrone-fitting on their purified color-magnitude diagrams(CMDs)to derive the age of the clusters.The known cluster NGC 7062 in an adjacent area is chosen to verify our identification process.The estimated distance,reddening and age of NGC 7062 are in good agreement with the literature.
基金supported by the National Key R&D Program of China(Grant 2017YFA0402704)by the National Natural Science Foundation of China(NSFC,Nos.11803044,11933003,11673028)+3 种基金sponsored(in part)by the Chinese Academy of Sciences(CAS),through a grant to the CAS South America Center for Astronomy(CASSACA)supported by the NSFC(Nos.U1931109 and 11733006)the Young Researcher Grant funded by National Astronomical Observatories,Chinese Academy of Sciences(CAS)the Youth Innovation Promotion Association,CAS。
文摘How low surface brightness galaxies(LSBGs)form stars and assemble stellar mass is one of the most important questions related to understanding the LSBG population.We select a sample of 381 HI bright LSBGs with both far ultraviolet(FUV)and near infrared(NIR)observations to investigate the star formation rate(SFR)and stellar mass scales,and the growth mode.We measure the FUV and NIR radii of our sample,which represent the star-forming and stellar mass distribution scales respectively.We also compare the FUV and H band radius-stellar mass relation with archival data,to identify the SFR and stellar mass structure difference between the LSBG population and other galaxies.Since galaxy HI mass has a tight correlation with the HI radius,we can also compare the HI and FUV radii to understand the distribution of HI gas and star formation activities.Our results show that most of the HI selected LSBGs have extended star formation structure.The stellar mass distribution of LSBGs may have a similar structure to disk galaxies at the same stellar mass bins,but the star-forming activity of LSBGs happens at a larger radius than the high surface density galaxies,which may help to identify the LSBG sample from the wide-field deep u band image survey.The HI is also distributed at larger radii,implying a steeper(or not)Kennicutt-Schmidt relation for LSBGs.
基金the National Natural Science Foundation of China(Grant Nos.11988101,11725313 and 11629302)the CAS International Partnership Program(No.114A11KYSB20160008)。
文摘We report here Atacama Large Millimeter/submillimeter Array(ALMA)N2H+(1-0)images of the Orion Molecular Cloud 2 and 3(OMC-2/3)with high angular resolution(3"or 1200 au)and high spatial dynamic range.Combining a dataset from the ALMA main array,Atacama Compact Array(ACA),Nobeyama 45-m Telescope and Very Large Array(VLA)(providing temperature measurement on matching scales),we find that most of the dense gas in OMC-2/3 is subsonic(σQNT/cs=0.62)with a mean line width(△v)of 0.39 kms-1 full width at half maximum(FWHM).This is markedly different from the majority of previous observations of massive star-forming regions.In contrast,line widths from the Nobeyama Telescope are transonic at 0.69 km s-1(σNT/cs=1.08).We demonstrated that the larger line widths obtained by the single-dish telescope arose from unresolved sub-structures within their respective beams.The dispersions from larger scalesσls(as traced by the Nobeyama Telescope)can be decomposed into three components such thatσls2=σss2+σbm2+σrd2,where small-scaleσss is the line dispersion of each ALMA beam,bulk motionσbm is dispersion between peak velocity of each ALMA beam andσrd is the residual dispersion.Such decomposition,though purely empirical,appears to be robust throughout our data cubes.Apparent supersonic line widths,commonly found in massive molecular clouds,are thus likely due to the effect of poor spatial resolution.The observed non-thermal line dispersion(sometimes referred to as’turbulence’)transits from supersonic to subsonic at~0.05 pc scales in the OMC-2/3 region.Such transition could be commonly found with sufficient spatial(not just angular)resolution,even in regions with massive young clusters,such as the Orion molecular clouds studied here.
基金supported by the CASSACA Postdoc Grant(from the Chinese Academy of Sciences,CAS)the Visiting Scholarship Grant(administered by the CAS South America Center for Astronomy,CASSACA,NAOC)+3 种基金Science&Technology Department of Yunnan Province–Yunnan University Joint Funding(2019FY003005)the National Natural Science Foundation of China(Grant Nos.11203019 and 11863006)supported by the Young Researcher Grant of National Astronomical Observatories,Chinese Academy of Science and the National Natural Science Foundation of China(Grant No.11803044)sponsored(in part)by the Chinese Academy of Sciences(CAS),through a grant to the CAS South America Center for Astronomy(CASSACA)。
文摘We report the discovery of year-scale X-ray variation in the nuclear region of the M87 by reanalyze the eight Chandra observations from 2007 to 2008. The X-ray spectra are fitted and decomposed into disk and flaring components. This year-scale X-ray variability can be explained quite well by a simple clumpy accretion model. We conclude that the central super-massive black hole of M87 was accreting a cloud of ~ 0.5 M⊙at that time.
基金support of the National Natural Science Foundation of China (NSFC, Grant No. 11390373)HXZ acknowledges support from the China Postdoctoral Science Foundation (Grant No. 2013M530008)+1 种基金the CAS-CONICYT Postdoctoral Fellowship, administered by the Chinese Academy of Sciences South America Center for Astronomy (CASSACA)MF acknowledges the NSFC (Grant No. 11203081)
文摘We investigated the evolutionary stages and disk properties of 211 young stellar objects(YSOs) across the Perseus cloud by modeling their broadband optical to mid-infrared(IR) spectral energy distribution(SED). Our optical gri photometry data were obtained from the recently finished Purple Mountain Observatory Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center(XSTPS-GAC).About 81% of our sample fall into the Stage II phase which is characterized by having optically thick disks, while 14% into the Stage I phase characterized by having significant infalling envelopes, and the remaining 5% into the Stage Ⅲ phase characterized by having optically thin disks. The median stellar age and mass of the Perseus YSOs are 3.1 Myr and 0.3 M⊙ respectively. By exploring the relationships among the turnoff wave bands λturnoff(longward of which significant IR excesses above the stellar photosphere are observed), the excess spectral index αexcess as determined for λ 〉 λturnoff, and the disk inner radius Rin(determined from SED modeling) for YSOs at different evolutionary stages, we found that the median and standard deviation of αexcess for YSOs with optically thick disks tend to increase withλturnoff, especially at λturnoff ≥5.8 μm, whereas the median fractional dust luminosities Ldust/L★ tend to decrease with increasing λturnoff. This points to an inside-out process of disk clearing for small dust grains. Moreover, a positive correlation between αexcess and Rin was found at α〉excess ~ 0 and R〉in~ 10 × the dust sublimation radius Rsub, irrespective of λturnoff, Ldust/L★ and disk flaring. This suggests that the outer disk flaring either does not evolve synchronously with the inside-out disk clearing of small dust grains or has little appreciable influence on the spectral slopes at λ〈~ 24 μm. About 23% of our YSO disks are classified as transitional disks, which haveλturnoff ≥ 5.8 μm and Ldust/L★ 〉 10-3. The transitional disks and full disks occupy distinctly different regions on the Ldust/L★ vs. αexcess diagram. Taking Ldust/L★ as an approximate discriminator of disks with(〉0.1) and without(〈0.1) considerable accretion activity, we found that 65% and 35% of the transitional disks may be consistent with being dominantly cleared by photoevaporation and dynamical interaction with giant planets respectively. None of our transitional disks have αexcess(〈0.0) or Ldust/L★(〉0.1) values that would otherwise be suggestive of disk clearing dominanted by grain growth.