INADEQUATE(Incredible Natural Abundance DoublE QUAntum Transfer Experiment)is one of the most important techniques in revealing the carbon skeleton of organic solids in solid-state NMR spectroscopy.Nevertheless,its us...INADEQUATE(Incredible Natural Abundance DoublE QUAntum Transfer Experiment)is one of the most important techniques in revealing the carbon skeleton of organic solids in solid-state NMR spectroscopy.Nevertheless,its use for structural analysis is quite limited due to the low natural abundance of^(13)C-^(13)C connectivity(~0.01%)and thus low sensitivity.Particularly,in semi-solids like rubbers,the sensitivity will be further significantly reduced by the inefficient cross polarization from 1H to^(13)C due to molecular motions induced averaging of^(1)H-^(13)C dipolar couplings.Herein,in this study,we demonstrate that transient nuclear Overhauser effect(NOE)can be used to efficiently enhance^(13)C signals,and thus enable rapid acquisition of two-dimensional(2D)^(13)C INADEQUATE spectra of rubbers.Using chlorobutyl rubber as the model system,it is found that an overall signalto-noise ratio(SNR)enhancement about 22%can be achieved,leading to significant timesaving by about 33%as compared to the direct polarization-based INADEQUATE experiment.Further experimental results on natural rubber and ethylene propylene diene monomer(EPDM)rubber are also shown to demonstrate the robust performance of transient NOE enhanced INADEQUATE experiment.展开更多
Due to the complicated film formation kinetics, morphology control remains a major challenge for the development of efficient and stable all-polymer solar cells(all-PSCs). To overcome this obstacle, the sequential dep...Due to the complicated film formation kinetics, morphology control remains a major challenge for the development of efficient and stable all-polymer solar cells(all-PSCs). To overcome this obstacle, the sequential deposition method is used to fabricate the photoactive layers of all-PSCs comprising a polymer donor PTzBI-oF and a polymer acceptor PS1. The film morphology can be manipulated by incorporating amounts of a dibenzyl ether additive into the PS1 layer. Detailed morphology investigations by grazing incidence wide-angle X-ray scattering and a transmission electron microscope reveal that the combination merits of sequential deposition and DBE additive can render favorable crystalline properties as well as phase separation for PTzBI-oF:PS1 blends. Consequently, the optimized all-PSCs delivered an enhanced power conversion efficiency(PCE) of 15.21%along with improved carrier extraction and suppressed charge recombination. More importantly, the optimized all-PSCs remain over 90% of their initial PCEs under continuous thermal stress at 65 °C for over 500 h. This work validates that control over microstructure morphology via a sequential deposition process is a promising strategy for fabricating highly efficient and stable all-PSCs.展开更多
Titanium(Ti)and its alloys have been widely used as orthopedic implants,because of their favorable mechanical properties,corrosion resistance and biocompatibility.Despite their significant success in various clinical ...Titanium(Ti)and its alloys have been widely used as orthopedic implants,because of their favorable mechanical properties,corrosion resistance and biocompatibility.Despite their significant success in various clinical applications,the probability of failure,degradation and revision is undesirably high,especially for the patients with low bone density,insufficient quantity of bone or osteoporosis,which renders the studies on surface modification of Ti still active to further improve clinical results.It is discerned that surface physicochemical properties directly influence and even control the dynamic interaction that subsequently determines the success or rejection of orthopedic implants.Therefore,it is crucial to endow bulk materials with specific surface properties of high bioactivity that can be performed by surface modification to realize the osseointegration.This article first reviews surface characteristics of Ti materials and various conventional surface modification techniques involving mechanical,physical and chemical treatments based on the formation mechanism of the modified coatings.Such conventional methods are able to improve bioactivity of Ti implants,but the surfaces with static state cannot respond to the dynamic biological cascades from the living cells and tissues.Hence,beyond traditional static design,dynamic responsive avenues are then emerging.The dynamic stimuli sources for surface functionalization can originate from environmental triggers or physiological triggers.In short,this review surveys recent developments in the surface engineering of Ti materials,with a specific emphasis on advances in static to dynamic functionality,which provides perspectives for improving bioactivity and biocompatibility of Ti implants.展开更多
The construction of complex superlattices using homogenous soft matter has great potential for the bottom-up fabrication of complex,nanoscale structures.This topic is not only interested in scientific exploring for ne...The construction of complex superlattices using homogenous soft matter has great potential for the bottom-up fabrication of complex,nanoscale structures.This topic is not only interested in scientific exploring for new concepts of supramolecular crystals with nanometer in sizes,which is about thousand times larger in volumes than those of normal crystals,but also practically important to provide construction principles of metamaterials which are artificially structured materials for controlling and manipulating light,sound,and other physical behaviors.These systems have fast assembly kinetics and convenient processing procedures,making them ideal for large-scale superlattice production.In this perspective,we focus on recent developments in the construction of complex spherical packing superlattices using homogenous soft self-assemblies.We discuss the general mechanism of those formations of supramolecular motifs and provide an overview of the spherical packing superlattices self-assembled by homogenous soft matters based on different volume asymmetry.Additionally,we outline the potentials of utilizing this approach in constructing novel superlattices as well as its future challenges.展开更多
With the advancement of modern science and technology, large scientific facilities are increasingly oriented toward demand and application, and can be used for basic research as well as serving multiple disciplines. D...With the advancement of modern science and technology, large scientific facilities are increasingly oriented toward demand and application, and can be used for basic research as well as serving multiple disciplines. Developing large scientific facilities and related analytical technologies enhances understanding of large scientific facilities and popularizes their application in research across multiple disciplines. The combination of light or neutron sources from large scientific facilities and advanced analytical technologies can be achieved for materials structure information, dynamics study of chemical reactions, high dissociation of biomolecules, 3D visualization of energy materials or biological samples, etc. We first introduce the progress of domestic large scientific facilities of synchrotron radiation(SR) and free electron lasers(FELs) with different wavelengths and neutron sources.We further discuss the comparison between Chinese and typical foreign facilities in X-ray radiation from X-ray tubes, synchrotrons, X-ray FELs, and neutron sources based on physical parameters of light and neutron sources. In addition, we focus on the technological progress and perspectives combined with advanced X-ray radiation and neutron sources of large scientific facilities in China, especially in the nanoscience fields of energy catalysis and biological science. We hope that this roadmap will provide references on technology and methods to experimental users, as well as prospects for future development of technologies based on large research infrastructure facilities. Comprehensive studies and guidelines for basic research to practical application in various disciplines can be made with the assistance of large scientific facilities.展开更多
Solid-state batteries have become a frontrunner in humankind’s pursuit of safe and stable energy storage systems with high energy and power density.Electrolyte materials,currently,seem to be the Achilles’heel of sol...Solid-state batteries have become a frontrunner in humankind’s pursuit of safe and stable energy storage systems with high energy and power density.Electrolyte materials,currently,seem to be the Achilles’heel of solid-state batteries due to the slow kinetics and poor interfacial wetting.Combining the merits of solid inorganic electrolytes(SIEs)and solid polymer electrolytes(SPEs),inorganic/polymer hybrid electrolytes(IPHEs)integrate improved ionic conductivity,great interfacial compatibility,wide electrochemical stability window,and high mechanical toughness and flexibility in one material,having become a sought-after pathway to high-performance all-solid-state lithium batteries.Herein,we present a comprehensive overview of recent progress in IPHEs,including the awareness of ion migration fundamentals,advanced architectural design for better electrochemical performance,and a perspective on unconquered challenges and potential research directions.This review is expected to provide a guidance for designing IPHEs for next-generation lithium batteries,with special emphasis on developing high-voltage-tolerance polymer electrolytes to enable higher energy density and three-dimensional(3D)continuous ion transport highways to achieve faster charging and discharging.展开更多
Highly stretchable and robust strain sensors are rapidly emerging as promising candidates for a diverse of wearable electronics.The main challenge for the practical application of wearable electronics is the energy co...Highly stretchable and robust strain sensors are rapidly emerging as promising candidates for a diverse of wearable electronics.The main challenge for the practical application of wearable electronics is the energy consumption and device aging.Energy consumption mainly depends on the conductivity of the sensor,and it is a key factor in determining device aging.Here,we design a liq-uid metal(LM)-embedded hydrogel as a sensing material to overcome the bar-rier of energy consumption and device aging of wearable electronics.The sensing material simultaneously exhibits high conductivity(up to 22 S m�1),low elastic modulus(23 kPa),and ultrahigh stretchability(1500%)with excel-lent robustness(consistent performance against 12000 mechanical cycling).A motion monitoring system is composed of intrinsically soft LM-embedded hydrogel as sensing material,a microcontroller,signal-processing circuits,Bluetooth transceiver,and self-organizing map developed software for the visu-alization of multi-dimensional data.This system integrating multiple functions including signal conditioning,processing,and wireless transmission achieves monitor hand gesture as well as sign-to-verbal translation.This approach provides an ideal strategy for deaf-mute communicating with normal people and broadens the application of wearable electronics.展开更多
Formation of plasmonic structure in closely packed assemblies of metallic nanoparticles(NPs)is essential for various applications in sensing,renewable energy,authentication,catalysis,and metamaterials.Herein,a surface...Formation of plasmonic structure in closely packed assemblies of metallic nanoparticles(NPs)is essential for various applications in sensing,renewable energy,authentication,catalysis,and metamaterials.Herein,a surface-enhanced Raman scattering(SERS)substrate is fabricated for trace detection with ultrahigh sensitivity and stability.The SERS substrate is constructed from a simple yet robust strategy through in situ growth patterned assemblies of Au NPs based on a polymer brush templated synthesis strategy.Benefiting from the dense and uniform distribution of Au NPs,the resulting Au plasmonic nanostructure demonstrates a very strong SERS effect,while the outer polymer brush could restrict the excessive growth of Au NPs and the patterned design could achieve uniform distribution of Au NPs.As results,an ultra-low limit of detection(LOD)of 10^(−15)M,which has never been successfully detected in other work,is determined for 4-acetamidothiophenol(4-AMTP)molecules and the Raman signals in the random region show good signal homogeneity with a low relative standard deviation(RSD)of 7.2%,indicating great sensitivity and reliability as a SERS substrate.The LOD values of such Au plasmonic nanostructures for methylene blue,thiram,and R6G molecules can also reach as low as 10^(−10)M,further indicating that the substrate has a wide range of applicability for SERS detection.With the help of finite difference time domain simulations(FDTD)calculation,the electric field distribution of the Au plasmonic nanostructures is simulated,which quantitatively matches the experimental observations.Moreover,the Au plasmonic nanostructures show good shelf stability for at least 10 months of storage in an ambient environment,indicating potentials for practical applications.展开更多
Comprehensive Summary With the rapid growth of soft electronic and ionotronic devices such as artificial tissues,soft luminescent devices,soft robotics,and human-machine interfaces,there is a demanding need to acceler...Comprehensive Summary With the rapid growth of soft electronic and ionotronic devices such as artificial tissues,soft luminescent devices,soft robotics,and human-machine interfaces,there is a demanding need to accelerate the development of soft ionic conductive materials.To date,the first-generation ionotronic devices are mainly based on hydrogels or ionogels.However,due to their intrinsic drawbacks,such as freezing or volatilization at extreme temperatures,and the leakage problem under external mechanical forces,the reliability of ionotronic devices under harsh conditions remains a great challenge.The advent of liquid-free ionic conductive elastomers(ICEs)has the potentials to solve the issues related to the gel-type soft conductive materials.The free ions shuttling within the ion-dissolvable polymer network enable liquid-free ICEs to exhibit unparalleled ionic conductivity and elasticity.Moreover,by tuning the composition and structure of the polymeric network,it is also feasible to integrate other desirable properties,such as self-healing ability,transparency,biocompatibility,and stimulus responsiveness,into liquid-free ICE materials.In this review,we summarize the design strategies of recently reported liquid-free ICEs,and further explore the methods to introduce multifunctionality,which originate from the rational molecular design and/or the synergy with other materials.Moreover,we highlight the representative applications of liquid-free ICEs in soft ionotronics.It is believed that liquid-free ICEs might provide a unique material platform for the next-generation ionotronics.展开更多
Obesity is closely related with insulin resistance and chronic inflammation.Here,we report that unsaturated lipid-modified polyoxovanadates(ULPOVs)can restrict weight gain of diet-induced obese mice and improve their ...Obesity is closely related with insulin resistance and chronic inflammation.Here,we report that unsaturated lipid-modified polyoxovanadates(ULPOVs)can restrict weight gain of diet-induced obese mice and improve their glycemic control and obesity-associated inflammation.Oral administration of the sub-nanosized ULPOVs at a low dosage for 7 weeks reduces the body weight and almost normalizes the blood glucose levels of obese mice fed on a high-fat diet.ULPOV treatment increases the activity of the nuclear receptor peroxisome proliferator-activated receptorγ(PPARγ)and reduces intestinal caloric intake,which may be the main reason for blood sugar and body weight control.In addition to insulin-sensitizing,PPARγactivation induced by ULPOV treatment in obese mice with atopic dermatitis(AD)promotes the type 2 T helper(TH_(2))cell selective responses and therapeutic effects on immune dysregulation caused by obesity.These data suggest sub-nanosized polyoxovanadate clusters as a class of potential candidates to relieve symptoms accompanied by diet-induced obesity.展开更多
Block copolymers(BCPs) with high Flory-Huggins parameter(χ) and balanced surface energy have aroused tremendous interest for ultra-small nanopatterns processing.However,high χ and balanced surface energy are general...Block copolymers(BCPs) with high Flory-Huggins parameter(χ) and balanced surface energy have aroused tremendous interest for ultra-small nanopatterns processing.However,high χ and balanced surface energy are generally contradicted.The fine tune of chain structure might be a useful way to achieve high χ and balanced surface energy.To realize this,the block copolymer with exactly uniform chain structure,i.e.,defined molecular structure,is highly desirable for accurately evaluating the phase behavior.Herein,two kinds of discrete oligo ester-b-oligo olefin block copolymers with different chemical structures(oligo lactic acid-boligo olefin BCP,oLA_(n)-b-C_(m);oligo phenyl lactic acid-b-oligo olefin BCP,oPL_(n)-b-C_(m)) were modularly synthesized through iterative growth methods.The effect of chain structure on segregation strength and surface properties was quantitatively investigated using the discrete BCPs as precise models.On the one hand,introducing rigid and nonpolar phenyl groups into oligo ester block has a negligible effect on the chemical incompatibility,as confirmed by the identical high χ values of oLA_(n)-b-C_(m) and oPL_(n)-b-C_(m)(χ_(oLA/C)=0.21 and χ_(oPL/C)=0.19).On the other hand,the incorporation of nonpolar phenyl groups creates balanced surface energy,that is,the high χ and balanced surface energy were simultaneously achieved by oPL_(n)-b-C_(m).Therefore,sub-10 nm perpendicular nanopatterns can be easily produced upon brief thermal treatment,demonstrating its potential application in semiconductor manufacturing with ultra-small feature size.The discrete BCP can serve as a quantitative and exquisite model to study the critical contribution of chain structures on phase separation behavior,providing insightful understanding to facilitate the potential application in the chip process.展开更多
Salt-doped block copolymers have widespread applications in batteries,fuel cells,semiconductors,and various industries,where their properties crucially depend on phase separation behavior.Traditionally,investigations ...Salt-doped block copolymers have widespread applications in batteries,fuel cells,semiconductors,and various industries,where their properties crucially depend on phase separation behavior.Traditionally,investigations into salt-doped diblock copolymers have predominantly focused on microphase separation,overlooking the segregation between ionic and polymeric species.This study employs weak segregation theory to explore the interplay between phase separation dominated by the polymer-modulated mode and the salt-out-modulated mode,corresponding to microscopic and macroscopic phase separations,respectively.By comparing diblock copolymers doped with salts to those doped with neutral solvents,we elucidate the significant role of charged species in modulating phase behavior.The phase separation mode exhibits a transition between the polymer-modulated and salt-out-modulated modes at different wavenumbers.In systems doped with neutral solvents,this transition is stepwise,while in salt-ion-doped systems,it is continuous.With a sufficiently large Flory-Huggins parameter between ions and polymers,the salt-out-modulated mode becomes dominant,promoting macrophase separation.Due to the solvation effect of salt ions,salt-doped systems are more inclined to undergo microphase separation.Furthermore,we explore factors influencing the critical wavenumber of phase separation,including doping level and the Flory-Huggins parameters between two blocks and between ions and polymeric species.Our findings reveal that in a neutral solvent environment,these factors alter only the boundary between micro-and macro-phase separations,leaving the critical wavenumber unchanged in microphase separation cases.However,in a salt-doped environment,the critical wavenumber of microphase separation varies with these parameters.This provides valuable insights into the pivotal role of electrostatics in the phase separation of salt-doped block copolymers.展开更多
There is a continuing quest to rationally fabricate polymeric biomaterials with both high transfection efficiency and minimal toxicity for the emerging opportunities in small interfering RNA(siRNA)delivery.Recently,th...There is a continuing quest to rationally fabricate polymeric biomaterials with both high transfection efficiency and minimal toxicity for the emerging opportunities in small interfering RNA(siRNA)delivery.Recently,this goal was promoted highly by developing a robust and efficient strategy to facilitate polymer-mediated RNAi using natural polyphenols with multiple phenol groups that could condense siRNA effectively into negatively charged nanoparticles(NPs).Further coating of these NPs with cationic polymers of low molecular weight enabled their intracellular siRNA delivery.Inspired by the structural and functional features of natural polyphenols,we aimed to further the development of low molecular weight polycatechols as a new class of efficient and biocompatible polymers for siRNA delivery in our current study.The fabricated polycatechols have benefits of requiring only one-step fabrication toward efficient siRNA nanoformulations.Moreover,they could deliver siRNA into cells and silence target genes both in vitro and in vivo.The resulting polycatechol/siRNA formulations were also functionally competent,demonstrating a successful,profound downregulation of a proinflammatory enzyme to attenuate chronic intestinal inflammation in an intestinal injury model.This study provides a new approach in chemistry for the development of efficient synthetic polymers for therapeutic siRNA delivery.展开更多
Interests in intracellular peptide delivery have continued to grow,significantly fueled by the importance of peptides and their mimetics in modern cell biology and pharmaceutical industry.However,efficient intracellul...Interests in intracellular peptide delivery have continued to grow,significantly fueled by the importance of peptides and their mimetics in modern cell biology and pharmaceutical industry.However,efficient intracellular delivery of membrane-impermeable peptides of different polarities remains a challenging task.In this study,we develop a general and robust strategy for intracellular peptide delivery by using a boronic acid-rich dendrimer.The designed material is capable of transporting peptides with different polarities and charge properties into the cytosol of various cell lines without inducing additional cytotoxicity.The transduction efficacy and proteolytic stability of cargo peptides delivered by the boronic acid-rich dendrimer are much superior to peptides conjugated with cell penetrant peptides such as octaarginine.In addition,the bioactivities of pro-apoptotic peptides are maintained after intracellular delivery.This study provides a versatile and robust platform for the intracellular delivery of membrane-impermeable peptides.展开更多
Photocleavable hydrogels are of great importance in the field of controlled drug delivery,stem cell fate regulation,surface patterning,and intelligent devices.However,the development of novel photocleavable gel system...Photocleavable hydrogels are of great importance in the field of controlled drug delivery,stem cell fate regulation,surface patterning,and intelligent devices.However,the development of novel photocleavable gel systems by visible light is usually met with challenges such as the lack of efficient and tunable photocleavable groups and reactions.Herein,we reported the facile fabrication of a new type of photocleavable hydrogels by the direct gelation of 4-arm thiol-terminated polyethylene glycol with 3,6-dichloro-1,2,4,5-tetrazine via the formation of S,S-tetrazine linkages.The prepared hydrogels underwent efficient degradation upon irradiation by ultraviolet or green light,and the degradation kinetics could be significantly promoted by hydrogen peroxide.Correspondingly,the hydrogels loaded with calcium peroxide microparticles or glucose oxidase/catalase enzymes enabled the precise and efficient in vivo photocontrol of gel degradation and drug release for cancer treatment.This work offers a promising and facile strategy towards the fabrication of visible light cleavable hydrogels with tunable and ondemand drug release properties.展开更多
The urgent need for immediate personal protection against chemical warfare agents(CWAs)spurs the requirement on robust and highly efficient catalytic systems that can be conveniently integrated to wearable devices.Her...The urgent need for immediate personal protection against chemical warfare agents(CWAs)spurs the requirement on robust and highly efficient catalytic systems that can be conveniently integrated to wearable devices.Herein,as a new concept for CWA decontamination catalyst design,sub-nanoscale,catalytically active zirconium-oxo molecular clusters are covalently integrated in flexible polymer network as crosslinkers for the full exposure of catalytic sites as well as robust framework structures.The obtained membrane catalysts exhibit high swelling ratio with aqueous content as 84 wt%and therefore,demonstrate quasi-homogeneous catalytic activity toward the rapid hydrolysis of both CWA,soman(GD)(t_(1/2)=5.0 min)and CWA simulant,methyl paraoxon(DMNP)(t_(1/2)=8.9 min).Meanwhile,due to the covalent nature of cross-linkages and the high flexibility of polymer strands,the membranes possess promising mechanical strength and toughness that can stand the impact of high gas pressures and show high permeation for both CO_(2)and O_(2),enabling their extended applications in the field of collective/personal protective materials with body comfort.展开更多
Solid-state electrolytes(SSEs)with high ionic conductivity,mechanical stability,and high thermal stability,as well as the stringent requirement of application in high-temperature fuel cells and lithium-ion batteries i...Solid-state electrolytes(SSEs)with high ionic conductivity,mechanical stability,and high thermal stability,as well as the stringent requirement of application in high-temperature fuel cells and lithium-ion batteries is receiving increasing attention.Polymer nanocomposites(PNCs),combining the advantages of inorganic materials with those of polymeric materials,offer numerous opportunities for SSEs design.In this work,we report a facile and general one-pot approach based on polymerization-induced microphase separation(PIMS)to generate PNCs with bi-continuous microphases.This synthetic strategy transforms a homogeneous liquid precursor consisting of polyoxometalates(POMs,H_(3)PW_(12)O_(40),Li_(7)[V_(15)O_(36)(CO_(3))]),poly(ethylene glycol)(PEG)macro-chain-transfer agent,styrene and divinylbenzene monomers,into a robust and transparent monolith.The resulting POMs are uniformly dispersed in the PEG block(PEG/POM)to form a conducting pathway that successfully realizes the effective transfer of protons and lithium ions,while the highly cross-linked polystyrene domains(P(S-co-DVB))as mechanical support provide outstanding mechanical properties and thermal stability.As the POM loading ratio up to 35 wt%,the proton conductivity of nanocomposite reaches as high as 5.99×10^(-4) S/cm at 100℃ in anhydrous environment,which effectively promotes proton transfer under extreme environments.This study broadens the application of fuel cells and lithium-ion batteries in extreme environments.展开更多
Photothermal therapy(PTT), typically ablates tumors via hyperthermia generated from photothermal agents(PTAs) under laser irradiation, has attracted great attentions in the past decades. Unfortunately,longstanding, fr...Photothermal therapy(PTT), typically ablates tumors via hyperthermia generated from photothermal agents(PTAs) under laser irradiation, has attracted great attentions in the past decades. Unfortunately,longstanding, frequent and high-power density laser irradiations are needed to maintain the hyperthermal status(>50 ℃) for efficient therapy, which will damage the skin and nearby healthy tissues. Suppressing cancer cells with a mild temperature elevation is more attractive and feasible for PTT. Recently,low-temperature photothermal therapy(LTPTT), which could inhibit tumor under mild hyperthermia, has been widely investigated by researchers. Herein, we systematically summarized the strategies to achieve LTPTT. Diverse PTAs including organic and inorganic materials reported for LTPTT were introduced. The established strategies for LTPTT were intensively described. Finally, the challenges as well as future perspectives in this field were discussed.展开更多
When the size of the material is smaller than the size of the molecular chain,new nanostructures can be formed by crystallizing polymers in nanoporous alumina.However,the effect of pore wall and geometric constraints ...When the size of the material is smaller than the size of the molecular chain,new nanostructures can be formed by crystallizing polymers in nanoporous alumina.However,the effect of pore wall and geometric constraints on polymer nanostructures remains unclear.In this study,we demonstrate three new restricted nanostructures{upright-,flat-and tilting-ring}in polybutylene terephthalate(PBT)nanorods prepared from nanoporous alumina.The dual effects of geometrical constraints and interfacial interactions on the formation of PBT nanostructures were investigated for the first time by using X-ray diffraction and Cerius^(2) modeling packages.Under weak constraints,the interaction between pore wall and the PBT rings is dominant and the ring plane tends to be parallel to the pore wall and radiate outward to grow the upright-ring crystals.Surprisingly,in strong 2D confinement,a structural formation reversal occurs and geometrical constraints overpower the effect of pore wall.Rings tend to pile up vertically or obliquely along the long axis of the rod,so the flat-and tilting-ring crystals are predominate in the constrained system.In principle,our study of the nanostructure formation based on the geometrical constraints and the pore wall interfacial effects could provide a new route to manipulate the chain assembly at the nanoscale,further improving the performance of polymer nanomaterial.展开更多
Metal-organic polyhedra(MOPs)possess a microporous framework and impose hierarchical constraints on their surface ligands,leading to the long-ignored,logarithmic ligand exchange dynamics.Herein,polymer networks with M...Metal-organic polyhedra(MOPs)possess a microporous framework and impose hierarchical constraints on their surface ligands,leading to the long-ignored,logarithmic ligand exchange dynamics.Herein,polymer networks with MOP as nanoscale cross-linkers(MOP-CNs)can integrate unique ligand exchange dynamics and microporosity,affording vitrimer-like gas separation membranes with promising mechanical performance and(re)processability.All the ligands on the MOP surfaces are confined and correlated via a 3D coordination framework and their neighboring spaces,giving rise to a high energy barrier for ligand exchange.Therefore,MOP-CNs demonstrate high mechanical strengths at room temperature due to their negligible ligand dynamics.The thermo-activated ligand exchange process with integrated network topology enables facile(re)processing and high solvo-resistance at high temperatures.This facilitates Arrhenius type temperature dependence of flowability and stress relaxation,giving rise to the simultaneous achievement of promising mechanical strengths and(re)processability.Finally,the cage topologies of MOPs endow the materials with a bonus microporous feature and spur their applications as gas separation membranes.展开更多
基金support of National Natural Science Foundation of China(No.22173033,and 22241501)Natural Science Foundation of Guangdong Province,China(No.2023A1515011395).
文摘INADEQUATE(Incredible Natural Abundance DoublE QUAntum Transfer Experiment)is one of the most important techniques in revealing the carbon skeleton of organic solids in solid-state NMR spectroscopy.Nevertheless,its use for structural analysis is quite limited due to the low natural abundance of^(13)C-^(13)C connectivity(~0.01%)and thus low sensitivity.Particularly,in semi-solids like rubbers,the sensitivity will be further significantly reduced by the inefficient cross polarization from 1H to^(13)C due to molecular motions induced averaging of^(1)H-^(13)C dipolar couplings.Herein,in this study,we demonstrate that transient nuclear Overhauser effect(NOE)can be used to efficiently enhance^(13)C signals,and thus enable rapid acquisition of two-dimensional(2D)^(13)C INADEQUATE spectra of rubbers.Using chlorobutyl rubber as the model system,it is found that an overall signalto-noise ratio(SNR)enhancement about 22%can be achieved,leading to significant timesaving by about 33%as compared to the direct polarization-based INADEQUATE experiment.Further experimental results on natural rubber and ethylene propylene diene monomer(EPDM)rubber are also shown to demonstrate the robust performance of transient NOE enhanced INADEQUATE experiment.
基金financially supported by Guangdong Major Project of Basic and Applied Basic Research (No.2019B030302007)National Key Research and Development Program of China (No. 2019YFA0705900) funded by MOSTthe financial support by State Key Lab of Luminescent Materials and Devices,South China University of Technology (Skllmd-2022-03)。
文摘Due to the complicated film formation kinetics, morphology control remains a major challenge for the development of efficient and stable all-polymer solar cells(all-PSCs). To overcome this obstacle, the sequential deposition method is used to fabricate the photoactive layers of all-PSCs comprising a polymer donor PTzBI-oF and a polymer acceptor PS1. The film morphology can be manipulated by incorporating amounts of a dibenzyl ether additive into the PS1 layer. Detailed morphology investigations by grazing incidence wide-angle X-ray scattering and a transmission electron microscope reveal that the combination merits of sequential deposition and DBE additive can render favorable crystalline properties as well as phase separation for PTzBI-oF:PS1 blends. Consequently, the optimized all-PSCs delivered an enhanced power conversion efficiency(PCE) of 15.21%along with improved carrier extraction and suppressed charge recombination. More importantly, the optimized all-PSCs remain over 90% of their initial PCEs under continuous thermal stress at 65 °C for over 500 h. This work validates that control over microstructure morphology via a sequential deposition process is a promising strategy for fabricating highly efficient and stable all-PSCs.
基金supported by National Key Research and Development Program of China(grant Nos.2020YFC2004900,2016YFC1100300)the National Natural Science Foundation of China(grant Nos.21773199,51571169,52001265).
文摘Titanium(Ti)and its alloys have been widely used as orthopedic implants,because of their favorable mechanical properties,corrosion resistance and biocompatibility.Despite their significant success in various clinical applications,the probability of failure,degradation and revision is undesirably high,especially for the patients with low bone density,insufficient quantity of bone or osteoporosis,which renders the studies on surface modification of Ti still active to further improve clinical results.It is discerned that surface physicochemical properties directly influence and even control the dynamic interaction that subsequently determines the success or rejection of orthopedic implants.Therefore,it is crucial to endow bulk materials with specific surface properties of high bioactivity that can be performed by surface modification to realize the osseointegration.This article first reviews surface characteristics of Ti materials and various conventional surface modification techniques involving mechanical,physical and chemical treatments based on the formation mechanism of the modified coatings.Such conventional methods are able to improve bioactivity of Ti implants,but the surfaces with static state cannot respond to the dynamic biological cascades from the living cells and tissues.Hence,beyond traditional static design,dynamic responsive avenues are then emerging.The dynamic stimuli sources for surface functionalization can originate from environmental triggers or physiological triggers.In short,this review surveys recent developments in the surface engineering of Ti materials,with a specific emphasis on advances in static to dynamic functionality,which provides perspectives for improving bioactivity and biocompatibility of Ti implants.
基金financially supported by the Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices(No.2019B121203003)the Recruitment Program of Guangdong(No.2016ZT06C322)Major Program of National Natural Science Foundation of China(No.51890871)。
文摘The construction of complex superlattices using homogenous soft matter has great potential for the bottom-up fabrication of complex,nanoscale structures.This topic is not only interested in scientific exploring for new concepts of supramolecular crystals with nanometer in sizes,which is about thousand times larger in volumes than those of normal crystals,but also practically important to provide construction principles of metamaterials which are artificially structured materials for controlling and manipulating light,sound,and other physical behaviors.These systems have fast assembly kinetics and convenient processing procedures,making them ideal for large-scale superlattice production.In this perspective,we focus on recent developments in the construction of complex spherical packing superlattices using homogenous soft self-assemblies.We discuss the general mechanism of those formations of supramolecular motifs and provide an overview of the spherical packing superlattices self-assembled by homogenous soft matters based on different volume asymmetry.Additionally,we outline the potentials of utilizing this approach in constructing novel superlattices as well as its future challenges.
基金supported by the National Basic Research Program of China (2022YFA1603701, 2021YFA1200900)the institutionalized scientific research platform relies on Beijing Synchrotron Radiation Facility of Chinese Academy of Sciences,the Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000)+2 种基金the National Natural Science Foundation of China (22027810, 82341044,22388101 and 22307028)the CAMS Innovation Fund for Medical Sciences(CIFMS 2019-I2M-5-018)the New Cornerstone Science Foundation。
文摘With the advancement of modern science and technology, large scientific facilities are increasingly oriented toward demand and application, and can be used for basic research as well as serving multiple disciplines. Developing large scientific facilities and related analytical technologies enhances understanding of large scientific facilities and popularizes their application in research across multiple disciplines. The combination of light or neutron sources from large scientific facilities and advanced analytical technologies can be achieved for materials structure information, dynamics study of chemical reactions, high dissociation of biomolecules, 3D visualization of energy materials or biological samples, etc. We first introduce the progress of domestic large scientific facilities of synchrotron radiation(SR) and free electron lasers(FELs) with different wavelengths and neutron sources.We further discuss the comparison between Chinese and typical foreign facilities in X-ray radiation from X-ray tubes, synchrotrons, X-ray FELs, and neutron sources based on physical parameters of light and neutron sources. In addition, we focus on the technological progress and perspectives combined with advanced X-ray radiation and neutron sources of large scientific facilities in China, especially in the nanoscience fields of energy catalysis and biological science. We hope that this roadmap will provide references on technology and methods to experimental users, as well as prospects for future development of technologies based on large research infrastructure facilities. Comprehensive studies and guidelines for basic research to practical application in various disciplines can be made with the assistance of large scientific facilities.
基金This work was financially supported by the National Natural Science Foundation of China(No.22003017)the National Key R&D Program of China(No.2018YFB1900603)+2 种基金Natural Science Foundation of Guangdong Province(No.2020A1515011506)Xiaoyu JI is thankful for the financial support from the China Scholarship Council(No.201903170199)for his visit to Yale UniversityThe authors thank Prof.Mingjiang ZHONG(Yale University)and Prof.Stephen Z.D.CHENG(University of Akron)for their helpful discussion.
文摘Solid-state batteries have become a frontrunner in humankind’s pursuit of safe and stable energy storage systems with high energy and power density.Electrolyte materials,currently,seem to be the Achilles’heel of solid-state batteries due to the slow kinetics and poor interfacial wetting.Combining the merits of solid inorganic electrolytes(SIEs)and solid polymer electrolytes(SPEs),inorganic/polymer hybrid electrolytes(IPHEs)integrate improved ionic conductivity,great interfacial compatibility,wide electrochemical stability window,and high mechanical toughness and flexibility in one material,having become a sought-after pathway to high-performance all-solid-state lithium batteries.Herein,we present a comprehensive overview of recent progress in IPHEs,including the awareness of ion migration fundamentals,advanced architectural design for better electrochemical performance,and a perspective on unconquered challenges and potential research directions.This review is expected to provide a guidance for designing IPHEs for next-generation lithium batteries,with special emphasis on developing high-voltage-tolerance polymer electrolytes to enable higher energy density and three-dimensional(3D)continuous ion transport highways to achieve faster charging and discharging.
基金National Natural Science Foundation of China,Grant/Award Numbers:22176221,51763010,51963011Central Public-interest Scientific Institution Basal Research Fund(CAFS),Grant/Award Number:2020TD75+2 种基金Jiangxi Provincial Double Thousand Talents Plan-Youth Program,Grant/Award Number:JXSQ2019201108Jiangxi Key Laboratory of Flexible Electronics,Grant/Award Number:20212BCD42004National。
文摘Highly stretchable and robust strain sensors are rapidly emerging as promising candidates for a diverse of wearable electronics.The main challenge for the practical application of wearable electronics is the energy consumption and device aging.Energy consumption mainly depends on the conductivity of the sensor,and it is a key factor in determining device aging.Here,we design a liq-uid metal(LM)-embedded hydrogel as a sensing material to overcome the bar-rier of energy consumption and device aging of wearable electronics.The sensing material simultaneously exhibits high conductivity(up to 22 S m�1),low elastic modulus(23 kPa),and ultrahigh stretchability(1500%)with excel-lent robustness(consistent performance against 12000 mechanical cycling).A motion monitoring system is composed of intrinsically soft LM-embedded hydrogel as sensing material,a microcontroller,signal-processing circuits,Bluetooth transceiver,and self-organizing map developed software for the visu-alization of multi-dimensional data.This system integrating multiple functions including signal conditioning,processing,and wireless transmission achieves monitor hand gesture as well as sign-to-verbal translation.This approach provides an ideal strategy for deaf-mute communicating with normal people and broadens the application of wearable electronics.
基金supported by the National Natural Science Foundation of China(Nos.21905097,21805091,21774038,and 91856128)the China Postdoctoral Science Foundation(No.L1190440)+2 种基金Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices(No.2019B121203003)the Pearl River Talents Scheme(No.2016ZT06C322)State Key Laboratory of Bio-Fibers and Eco-Textiles(Qingdao University,No.K2019-02).
文摘Formation of plasmonic structure in closely packed assemblies of metallic nanoparticles(NPs)is essential for various applications in sensing,renewable energy,authentication,catalysis,and metamaterials.Herein,a surface-enhanced Raman scattering(SERS)substrate is fabricated for trace detection with ultrahigh sensitivity and stability.The SERS substrate is constructed from a simple yet robust strategy through in situ growth patterned assemblies of Au NPs based on a polymer brush templated synthesis strategy.Benefiting from the dense and uniform distribution of Au NPs,the resulting Au plasmonic nanostructure demonstrates a very strong SERS effect,while the outer polymer brush could restrict the excessive growth of Au NPs and the patterned design could achieve uniform distribution of Au NPs.As results,an ultra-low limit of detection(LOD)of 10^(−15)M,which has never been successfully detected in other work,is determined for 4-acetamidothiophenol(4-AMTP)molecules and the Raman signals in the random region show good signal homogeneity with a low relative standard deviation(RSD)of 7.2%,indicating great sensitivity and reliability as a SERS substrate.The LOD values of such Au plasmonic nanostructures for methylene blue,thiram,and R6G molecules can also reach as low as 10^(−10)M,further indicating that the substrate has a wide range of applicability for SERS detection.With the help of finite difference time domain simulations(FDTD)calculation,the electric field distribution of the Au plasmonic nanostructures is simulated,which quantitatively matches the experimental observations.Moreover,the Au plasmonic nanostructures show good shelf stability for at least 10 months of storage in an ambient environment,indicating potentials for practical applications.
基金Financial support from the National Natural Science Foundation of China(91856128 and U1832220)the Pearl River Talents Scheme(2016ZT06C322)+1 种基金Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices(2019B121203003)the R&D Program of Guangzhou(202102020576)was acknowledged.References。
文摘Comprehensive Summary With the rapid growth of soft electronic and ionotronic devices such as artificial tissues,soft luminescent devices,soft robotics,and human-machine interfaces,there is a demanding need to accelerate the development of soft ionic conductive materials.To date,the first-generation ionotronic devices are mainly based on hydrogels or ionogels.However,due to their intrinsic drawbacks,such as freezing or volatilization at extreme temperatures,and the leakage problem under external mechanical forces,the reliability of ionotronic devices under harsh conditions remains a great challenge.The advent of liquid-free ionic conductive elastomers(ICEs)has the potentials to solve the issues related to the gel-type soft conductive materials.The free ions shuttling within the ion-dissolvable polymer network enable liquid-free ICEs to exhibit unparalleled ionic conductivity and elasticity.Moreover,by tuning the composition and structure of the polymeric network,it is also feasible to integrate other desirable properties,such as self-healing ability,transparency,biocompatibility,and stimulus responsiveness,into liquid-free ICE materials.In this review,we summarize the design strategies of recently reported liquid-free ICEs,and further explore the methods to introduce multifunctionality,which originate from the rational molecular design and/or the synergy with other materials.Moreover,we highlight the representative applications of liquid-free ICEs in soft ionotronics.It is believed that liquid-free ICEs might provide a unique material platform for the next-generation ionotronics.
基金supported by the National Natural Science Foundation of China(No.22101086)the Natural Science Foundation of Guangdong Province(No.2021A1515010271)the Guangzhou Basic and Applied Basic Research Project(No.202201010052).
文摘Obesity is closely related with insulin resistance and chronic inflammation.Here,we report that unsaturated lipid-modified polyoxovanadates(ULPOVs)can restrict weight gain of diet-induced obese mice and improve their glycemic control and obesity-associated inflammation.Oral administration of the sub-nanosized ULPOVs at a low dosage for 7 weeks reduces the body weight and almost normalizes the blood glucose levels of obese mice fed on a high-fat diet.ULPOV treatment increases the activity of the nuclear receptor peroxisome proliferator-activated receptorγ(PPARγ)and reduces intestinal caloric intake,which may be the main reason for blood sugar and body weight control.In addition to insulin-sensitizing,PPARγactivation induced by ULPOV treatment in obese mice with atopic dermatitis(AD)promotes the type 2 T helper(TH_(2))cell selective responses and therapeutic effects on immune dysregulation caused by obesity.These data suggest sub-nanosized polyoxovanadate clusters as a class of potential candidates to relieve symptoms accompanied by diet-induced obesity.
基金supported by the National Natural Science Foundation of China(21925107,22273026)China Postdoctoral Science Foundation(71st,2022M712306)+1 种基金the Collaborative Innovation Center of Suzhou Nano Science and Technologythe Jiangsu Funding Program for Excellent Postdoctoral Talent。
文摘Block copolymers(BCPs) with high Flory-Huggins parameter(χ) and balanced surface energy have aroused tremendous interest for ultra-small nanopatterns processing.However,high χ and balanced surface energy are generally contradicted.The fine tune of chain structure might be a useful way to achieve high χ and balanced surface energy.To realize this,the block copolymer with exactly uniform chain structure,i.e.,defined molecular structure,is highly desirable for accurately evaluating the phase behavior.Herein,two kinds of discrete oligo ester-b-oligo olefin block copolymers with different chemical structures(oligo lactic acid-boligo olefin BCP,oLA_(n)-b-C_(m);oligo phenyl lactic acid-b-oligo olefin BCP,oPL_(n)-b-C_(m)) were modularly synthesized through iterative growth methods.The effect of chain structure on segregation strength and surface properties was quantitatively investigated using the discrete BCPs as precise models.On the one hand,introducing rigid and nonpolar phenyl groups into oligo ester block has a negligible effect on the chemical incompatibility,as confirmed by the identical high χ values of oLA_(n)-b-C_(m) and oPL_(n)-b-C_(m)(χ_(oLA/C)=0.21 and χ_(oPL/C)=0.19).On the other hand,the incorporation of nonpolar phenyl groups creates balanced surface energy,that is,the high χ and balanced surface energy were simultaneously achieved by oPL_(n)-b-C_(m).Therefore,sub-10 nm perpendicular nanopatterns can be easily produced upon brief thermal treatment,demonstrating its potential application in semiconductor manufacturing with ultra-small feature size.The discrete BCP can serve as a quantitative and exquisite model to study the critical contribution of chain structures on phase separation behavior,providing insightful understanding to facilitate the potential application in the chip process.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(No.92372104)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110016)the Recruitment Program of Guangdong(No.2016ZT06C322),and TCL Science and Technology Innovation Fund.
文摘Salt-doped block copolymers have widespread applications in batteries,fuel cells,semiconductors,and various industries,where their properties crucially depend on phase separation behavior.Traditionally,investigations into salt-doped diblock copolymers have predominantly focused on microphase separation,overlooking the segregation between ionic and polymeric species.This study employs weak segregation theory to explore the interplay between phase separation dominated by the polymer-modulated mode and the salt-out-modulated mode,corresponding to microscopic and macroscopic phase separations,respectively.By comparing diblock copolymers doped with salts to those doped with neutral solvents,we elucidate the significant role of charged species in modulating phase behavior.The phase separation mode exhibits a transition between the polymer-modulated and salt-out-modulated modes at different wavenumbers.In systems doped with neutral solvents,this transition is stepwise,while in salt-ion-doped systems,it is continuous.With a sufficiently large Flory-Huggins parameter between ions and polymers,the salt-out-modulated mode becomes dominant,promoting macrophase separation.Due to the solvation effect of salt ions,salt-doped systems are more inclined to undergo microphase separation.Furthermore,we explore factors influencing the critical wavenumber of phase separation,including doping level and the Flory-Huggins parameters between two blocks and between ions and polymeric species.Our findings reveal that in a neutral solvent environment,these factors alter only the boundary between micro-and macro-phase separations,leaving the critical wavenumber unchanged in microphase separation cases.However,in a salt-doped environment,the critical wavenumber of microphase separation varies with these parameters.This provides valuable insights into the pivotal role of electrostatics in the phase separation of salt-doped block copolymers.
基金supported by the National Key R&D Program of China,Synthetic Biology Research(no.2019YFA0904500)the National Natural Science Foundation of China(nos.21725402 and 21774079)+1 种基金the Shanghai Municipal Science and Technology Commission(no.17XD1401600)the Guangdong Innovative and Entrepreneurial Research Team Program(no.2016ZT06C322).
文摘There is a continuing quest to rationally fabricate polymeric biomaterials with both high transfection efficiency and minimal toxicity for the emerging opportunities in small interfering RNA(siRNA)delivery.Recently,this goal was promoted highly by developing a robust and efficient strategy to facilitate polymer-mediated RNAi using natural polyphenols with multiple phenol groups that could condense siRNA effectively into negatively charged nanoparticles(NPs).Further coating of these NPs with cationic polymers of low molecular weight enabled their intracellular siRNA delivery.Inspired by the structural and functional features of natural polyphenols,we aimed to further the development of low molecular weight polycatechols as a new class of efficient and biocompatible polymers for siRNA delivery in our current study.The fabricated polycatechols have benefits of requiring only one-step fabrication toward efficient siRNA nanoformulations.Moreover,they could deliver siRNA into cells and silence target genes both in vitro and in vivo.The resulting polycatechol/siRNA formulations were also functionally competent,demonstrating a successful,profound downregulation of a proinflammatory enzyme to attenuate chronic intestinal inflammation in an intestinal injury model.This study provides a new approach in chemistry for the development of efficient synthetic polymers for therapeutic siRNA delivery.
基金supported by the National Natural Science Foundation of China (21725402)the Science and Technology Commission of Shanghai Municipality (17XD1401600)+1 种基金Guangdong Innovative and Entrepreneurial Research Team Program (2016ZT06C322)supports from the Flow Cytometry Core Facility and the Confocal Microscopy Facility at ECNU
文摘Interests in intracellular peptide delivery have continued to grow,significantly fueled by the importance of peptides and their mimetics in modern cell biology and pharmaceutical industry.However,efficient intracellular delivery of membrane-impermeable peptides of different polarities remains a challenging task.In this study,we develop a general and robust strategy for intracellular peptide delivery by using a boronic acid-rich dendrimer.The designed material is capable of transporting peptides with different polarities and charge properties into the cytosol of various cell lines without inducing additional cytotoxicity.The transduction efficacy and proteolytic stability of cargo peptides delivered by the boronic acid-rich dendrimer are much superior to peptides conjugated with cell penetrant peptides such as octaarginine.In addition,the bioactivities of pro-apoptotic peptides are maintained after intracellular delivery.This study provides a versatile and robust platform for the intracellular delivery of membrane-impermeable peptides.
基金This study was supported by the National Key R&D Program of China,Synthetic Biology Research(No.2019YFA0904500)the National Natural Science Foundation of China(21725402 and 21774079)+1 种基金the Shanghai Municipal Science and Technology Commission(188014580)the Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06C322).
文摘Photocleavable hydrogels are of great importance in the field of controlled drug delivery,stem cell fate regulation,surface patterning,and intelligent devices.However,the development of novel photocleavable gel systems by visible light is usually met with challenges such as the lack of efficient and tunable photocleavable groups and reactions.Herein,we reported the facile fabrication of a new type of photocleavable hydrogels by the direct gelation of 4-arm thiol-terminated polyethylene glycol with 3,6-dichloro-1,2,4,5-tetrazine via the formation of S,S-tetrazine linkages.The prepared hydrogels underwent efficient degradation upon irradiation by ultraviolet or green light,and the degradation kinetics could be significantly promoted by hydrogen peroxide.Correspondingly,the hydrogels loaded with calcium peroxide microparticles or glucose oxidase/catalase enzymes enabled the precise and efficient in vivo photocontrol of gel degradation and drug release for cancer treatment.This work offers a promising and facile strategy towards the fabrication of visible light cleavable hydrogels with tunable and ondemand drug release properties.
基金the National Key Research and Development Program of China(No.2018YFB0704200)the Project of State Key Laboratory of NBC Protection for Civilian(No.ZKGSG-ZB-20194334)+1 种基金the National Natural Science Foundation of China(Nos.21961142018 and 51873067)Natural Science Foundation of Guangdong Province(Nos.2021A1515012024 and 2021A1515010271)。
文摘The urgent need for immediate personal protection against chemical warfare agents(CWAs)spurs the requirement on robust and highly efficient catalytic systems that can be conveniently integrated to wearable devices.Herein,as a new concept for CWA decontamination catalyst design,sub-nanoscale,catalytically active zirconium-oxo molecular clusters are covalently integrated in flexible polymer network as crosslinkers for the full exposure of catalytic sites as well as robust framework structures.The obtained membrane catalysts exhibit high swelling ratio with aqueous content as 84 wt%and therefore,demonstrate quasi-homogeneous catalytic activity toward the rapid hydrolysis of both CWA,soman(GD)(t_(1/2)=5.0 min)and CWA simulant,methyl paraoxon(DMNP)(t_(1/2)=8.9 min).Meanwhile,due to the covalent nature of cross-linkages and the high flexibility of polymer strands,the membranes possess promising mechanical strength and toughness that can stand the impact of high gas pressures and show high permeation for both CO_(2)and O_(2),enabling their extended applications in the field of collective/personal protective materials with body comfort.
基金supported by National Natural Science Foundation of China(Nos.21961142018,22101086 and 51873067)Natural Science Foundation of Guangdong Province(Nos.2021A1515012024 and 2021A1515010271)。
文摘Solid-state electrolytes(SSEs)with high ionic conductivity,mechanical stability,and high thermal stability,as well as the stringent requirement of application in high-temperature fuel cells and lithium-ion batteries is receiving increasing attention.Polymer nanocomposites(PNCs),combining the advantages of inorganic materials with those of polymeric materials,offer numerous opportunities for SSEs design.In this work,we report a facile and general one-pot approach based on polymerization-induced microphase separation(PIMS)to generate PNCs with bi-continuous microphases.This synthetic strategy transforms a homogeneous liquid precursor consisting of polyoxometalates(POMs,H_(3)PW_(12)O_(40),Li_(7)[V_(15)O_(36)(CO_(3))]),poly(ethylene glycol)(PEG)macro-chain-transfer agent,styrene and divinylbenzene monomers,into a robust and transparent monolith.The resulting POMs are uniformly dispersed in the PEG block(PEG/POM)to form a conducting pathway that successfully realizes the effective transfer of protons and lithium ions,while the highly cross-linked polystyrene domains(P(S-co-DVB))as mechanical support provide outstanding mechanical properties and thermal stability.As the POM loading ratio up to 35 wt%,the proton conductivity of nanocomposite reaches as high as 5.99×10^(-4) S/cm at 100℃ in anhydrous environment,which effectively promotes proton transfer under extreme environments.This study broadens the application of fuel cells and lithium-ion batteries in extreme environments.
基金financially supported by the Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices (No.2019B121203003)。
文摘Photothermal therapy(PTT), typically ablates tumors via hyperthermia generated from photothermal agents(PTAs) under laser irradiation, has attracted great attentions in the past decades. Unfortunately,longstanding, frequent and high-power density laser irradiations are needed to maintain the hyperthermal status(>50 ℃) for efficient therapy, which will damage the skin and nearby healthy tissues. Suppressing cancer cells with a mild temperature elevation is more attractive and feasible for PTT. Recently,low-temperature photothermal therapy(LTPTT), which could inhibit tumor under mild hyperthermia, has been widely investigated by researchers. Herein, we systematically summarized the strategies to achieve LTPTT. Diverse PTAs including organic and inorganic materials reported for LTPTT were introduced. The established strategies for LTPTT were intensively described. Finally, the challenges as well as future perspectives in this field were discussed.
基金financially supported by Natural Science Foundation of Shenzhen University(Nos.827-000150 and 860-000002110375).
文摘When the size of the material is smaller than the size of the molecular chain,new nanostructures can be formed by crystallizing polymers in nanoporous alumina.However,the effect of pore wall and geometric constraints on polymer nanostructures remains unclear.In this study,we demonstrate three new restricted nanostructures{upright-,flat-and tilting-ring}in polybutylene terephthalate(PBT)nanorods prepared from nanoporous alumina.The dual effects of geometrical constraints and interfacial interactions on the formation of PBT nanostructures were investigated for the first time by using X-ray diffraction and Cerius^(2) modeling packages.Under weak constraints,the interaction between pore wall and the PBT rings is dominant and the ring plane tends to be parallel to the pore wall and radiate outward to grow the upright-ring crystals.Surprisingly,in strong 2D confinement,a structural formation reversal occurs and geometrical constraints overpower the effect of pore wall.Rings tend to pile up vertically or obliquely along the long axis of the rod,so the flat-and tilting-ring crystals are predominate in the constrained system.In principle,our study of the nanostructure formation based on the geometrical constraints and the pore wall interfacial effects could provide a new route to manipulate the chain assembly at the nanoscale,further improving the performance of polymer nanomaterial.
基金The work is supported by the National Natural Science Foundation of China(grant nos.51873067 and 21961142018)the Natural Science Foundation of Guangdong Province(grant no.2021A1515012024).
文摘Metal-organic polyhedra(MOPs)possess a microporous framework and impose hierarchical constraints on their surface ligands,leading to the long-ignored,logarithmic ligand exchange dynamics.Herein,polymer networks with MOP as nanoscale cross-linkers(MOP-CNs)can integrate unique ligand exchange dynamics and microporosity,affording vitrimer-like gas separation membranes with promising mechanical performance and(re)processability.All the ligands on the MOP surfaces are confined and correlated via a 3D coordination framework and their neighboring spaces,giving rise to a high energy barrier for ligand exchange.Therefore,MOP-CNs demonstrate high mechanical strengths at room temperature due to their negligible ligand dynamics.The thermo-activated ligand exchange process with integrated network topology enables facile(re)processing and high solvo-resistance at high temperatures.This facilitates Arrhenius type temperature dependence of flowability and stress relaxation,giving rise to the simultaneous achievement of promising mechanical strengths and(re)processability.Finally,the cage topologies of MOPs endow the materials with a bonus microporous feature and spur their applications as gas separation membranes.