The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective l...The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective launches in the near future,to specify glo bal magnetic reconnection modes for varying solar wind conditions.To suppo rt the success of these scientific missions,it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images.In this research,we introduce a new geometric equation that calculates the subsolar magnetopause position(RS)from a satellite position,the look direction of the instrument,and the angle at which the X-ray emission is maximized.Two assumptions are used in this method:(1)The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause,and(2)the magnetopause surface near the subsolar point is almost spherical and thus RSis nea rly equal to the radius of the magneto pause curvature.We create synthetic soft X-ray images by using the Open Geospace General Circulation Model(OpenGGCM)global magnetohydrodynamic model,the galactic background,the instrument point spread function,and Poisson noise.We then apply the fast Fourier transform and Gaussian low-pass filte rs to the synthetic images to re move noise and obtain accurate look angles for the soft X-ray pea ks.From the filte red images,we calculate RS and its accuracy for different LEXI locations,look directions,and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth.Our method estimates RS with an accuracy of<0.3 RE when the solar wind density exceeds>10 cm-3.The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields.The method ca ptures the magnetopause motion during southwa rd interplaneta ry magnetic field turnings.Consequently,the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind conditions.This technique will suppo rt the LEXI and SMILE missions in achieving their scientific o bjectives.展开更多
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese...The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.展开更多
Magnetic holes are magnetic depression structures that exist widely in many plasma environments.The magnetic holes with durations of>1 s in the solar wind at Mercury’s orbit have drawn much attention,but the prope...Magnetic holes are magnetic depression structures that exist widely in many plasma environments.The magnetic holes with durations of>1 s in the solar wind at Mercury’s orbit have drawn much attention,but the properties of the magnetic holes with shorter durations are still unclear.Here,we investigate the magnetic holes with durations of 0.1-100 s in the upstream region of Mercury’s bow shock based on observations by the MESSENGER(MErcury Surface,Space ENvironment,GEochemistry,and Ranging)spacecraft.They can be divided into two groups according to the distribution of their duration:small-duration magnetic holes(SDMHs,<0.6 s)and large-duration magnetic holes(LDMHs,>0.6 s).The duration of each group approximately obeys a log-normal distribution with a median of~0.25 s and 3 s,respectively.Approximately 1.7%(32.6%)of the SDMHs(LDMHs)reduce the magnetic field strength by more than 50%.For both groups,some structures have a linear or quasi-linear polarization,whereas others have an elliptical polarization.The magnetic hole events in both groups tend to have a higher rate of occurrence when the interplanetary magnetic field strength is weaker.Their occurrence rates are also affected by Mercury’s foreshock,which can increase(decrease)the occurrence rate of the SDMHs(LDMHs).This finding suggests that Mercury’s foreshock might be one source of the SDMHs and that the foreshock can destroy some LDMHs.These observations suggest that a new group of magnetic holes with durations of<0.6 s exist in the upstream region of Mercury’s bow shock.展开更多
The experimental research programs of 1950s, to understand the adsorption of CO on W surfaces, changed to ab initio studies in 2000s. The goals were to seek improved practical applications. Most of the studies were ba...The experimental research programs of 1950s, to understand the adsorption of CO on W surfaces, changed to ab initio studies in 2000s. The goals were to seek improved practical applications. Most of the studies were based on density functional theory. Many studies also used programs, such as VASP (Vienna Abinitio simulation package) and CPMD. The computational procedures used plane wave approximations. This needed studies with selection of K points and cutoff energy selection to assure convergence in energy calculations. Observations and analysis of papers published from 2006 to 2022 indicate that the cutoff energies were selected arbitrarily without any needed convergence studies. By selecting a published 2006 paper, this paper has clearly showed that an arbitrary selection of cutoff energy, such as 460 eV, is not in the range of, cutoff energies that assure convergence of energy calculations, with ab initio methods and have indicated correction procedures. .展开更多
We retrospectively analyzed the temporal and spatial variations of four different physical parameters characterizing the state of the atmosphere and ionosphere several days before the M9 Tohoku, Japan earthquake of Ma...We retrospectively analyzed the temporal and spatial variations of four different physical parameters characterizing the state of the atmosphere and ionosphere several days before the M9 Tohoku, Japan earthquake of March 11, 2011. The data include outgoing long wave radiation (OLR), GPS/TEC, lower Earth orbit ionospheric tomography and critical frequency foF2. Our first results show that on March 7th a rapid increase of emitted infrared radiation was observed from the satellite data and an anomaly developed near the epicenter. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting from this day in the lower ionosphere also there was confirmed an abnormal TEC variation over the epicenter. From March 3 to 11 a large increase in electron concentration was recorded at all four Japanese ground-based ionosondes, which returned to normal after the main earthquake. The joint preliminary analysis of atmospheric and ionospheric parameters during the M9 Tohoku, Japan earthquake has revealed the presence of related variations of these parameters implying their connection with the earthquake process. This study may lead to a better understanding of the response of the atmosphere/ionosphere to the great Tohoku earthquake.展开更多
With Venus Express magnetic field measurements at 32 Hz from 2006 to 2012, we investigate statistically the magnetic fluctuations in the near-Venusian space. The global spatial distribution of their spectral scaling f...With Venus Express magnetic field measurements at 32 Hz from 2006 to 2012, we investigate statistically the magnetic fluctuations in the near-Venusian space. The global spatial distribution of their spectral scaling features is presented in MHD and kinetic regimes. It can be observed that turbulence is a common phenomenon in the solar wind in both regimes. The solar wind MHD turbulence is modified at the Venusian bow shock;MHD turbulence is absent in the Venusian magnetosheath but present at the magnetosheath boundary layer. Pre-existing kinetic turbulence from the far upstream solar wind is modified in the near solar wind region, while kinetic turbulence can be extensively observed throughout the Venusian magnetosheath and in some regions of the induced magnetosphere. Our results reveal that, in the near-Venusian space, energy cascade can be developed at the boundary between magnetosheath and wake, and the turbulence-related dissipation of magnetic energy occurs extensively in the magnetosheath and the induced magnetosphere.展开更多
Investigations of the effect of geomagnetic activity influence on the heart rhythm regulation of cosmonauts during the expeditions onboard the Soyuz spacecraft, and the MIR orbital space stations was carried out for v...Investigations of the effect of geomagnetic activity influence on the heart rhythm regulation of cosmonauts during the expeditions onboard the Soyuz spacecraft, and the MIR orbital space stations was carried out for various durations of flight in weightlessness and, under control of groups of cosmonauts who were inspected under flight conditions outside the geomagnetic disturbances and in ground preflight conditions, during disturbances and without them. The four series of analytical researches in which the data about changes of characteristics of heart rate variability are demonstrated for the first time the presence of specific effect of geomagnetic disturbances on the system of vegetative regulation of blood circulation of cosmonauts during the flight. The response of cosmonauts’ heart rhythm on the magnetic storm is depending on the initial functional background and, in particular, on the state of mechanisms of vegetative regulation (the duration of flight and adaptation to it).展开更多
The bipolar electric field solitary(EFS)structures observed frequently in space plasmas by satellites have two different polarities,first positive electric field peak then negative(i.e.,positive/negative)and first neg...The bipolar electric field solitary(EFS)structures observed frequently in space plasmas by satellites have two different polarities,first positive electric field peak then negative(i.e.,positive/negative)and first negative then positive peak(i.e.,negative/positive).We provide the physical explanation on the polarity of observed bipolar EFS structures with an electrostatic ion fluid model.The results show that if initial electric field𝐸E_(0)>0,the polarity of the bipolar EFS structure will be positive/negative;and if𝐸E_(0)<0,the polarity of the bipolar EFS structure will be negative/positive.However,for a fixed polarity of the EFS,either positive/negative or negative/positive,if the satellite is located at the positive side of the EFS,the observed polarity should be positive/negative,if the satellite is located at the negative side of the EFS,the observed polarity should be negative/positive.Therefore,we provide a method to clarify the natural polarity of the EFS with observed polarity by satellites.Our results are significant to understand the physical process in space plasma with the satellite observation.展开更多
Geomagnetic storms can result in large magnetic field disturbances and intense currents in the magnetosphere and even on the ground.As an important medium of momentum and energy transport among the solar wind,magnetos...Geomagnetic storms can result in large magnetic field disturbances and intense currents in the magnetosphere and even on the ground.As an important medium of momentum and energy transport among the solar wind,magnetosphere,and ionosphere,field-aligned currents(FACs)can also be strengthened in storm times.This study shows the responses of FACs in the plasma sheet boundary layer(PSBL)observed by the Magnetospheric Multiscale(MMS)spacecraft in different phases of a large storm that lasted from May 27,2017,to May 29,2017.Most of the FACs were carried by electrons,and several FACs in the storm time also contained sufficient ion FACs.The FAC magnitudes were larger in the storm than in the quiet period,and those in the main phase were the strongest.In this case,the direction of the FACs in the main phase showed no preference for tailward or earthward,whereas the direction of the FACs in the recovery phase was mostly tailward.The results suggest that the FACs in the PSBL are closely related to the storm and could be driven by activities in the tail region,where the energy transported from the solar wind to the magnetosphere is stored and released as the storm is evolving.Thus,the FACs are an important medium of energy transport between the tail and the ionosphere,and the PSBL is a significant magnetosphere–ionosphere coupling region in the nightside.展开更多
The Mars Orbiter MAGnetometer(MOMAG)is a scientific instrument onboard the orbiter of China’s first mission for Mars—Tianwen-1.Since November 13,2021,it has been recording magnetic field data from the solar wind to ...The Mars Orbiter MAGnetometer(MOMAG)is a scientific instrument onboard the orbiter of China’s first mission for Mars—Tianwen-1.Since November 13,2021,it has been recording magnetic field data from the solar wind to the magnetic pile-up region surrounding Mars.Here we present its in-flight performance and first science results,based on its first one and one-half months’data.Comparing these early MOMAG observations to the magnetic field data in the solar wind from NASA’s Mars Atmosphere and Volatile EvolutioN(MAVEN)mission,we report that the MOMAG magnetic field data are at the same level in magnitude,and describe the same magnetic structures with similar variations in three components.We recognize 158 clear bow shock(BS)crossings in these MOMAG data;their locations match well statistically with the modeled average BS.We also identify and compare five pairs of datasets collected when Tianwen-1’s orbiter and the MAVEN probe made simultaneous BS crossings.These BS crossings confirm the global shape of modeled BS,as well as the south-north asymmetry of the Martian BS.Two cases presented in this paper suggest that the BS is probably more dynamic at flank than near the nose.So far,MOMAG performs well,and provides accurate magnetic field vectors.MOMAG is continuously scanning the magnetic field surrounding Mars.Data from MOMAG’s measurements complement data from MAVEN and will undoubt edly advance our understanding of the plasma environment of Mars.展开更多
This work is inspired by a stealth pursuit behavior called motion camouflage whereby a pursuer approaches an evader while the pursuer camouflages itself against a predetermined background.We formulate the spacecraft p...This work is inspired by a stealth pursuit behavior called motion camouflage whereby a pursuer approaches an evader while the pursuer camouflages itself against a predetermined background.We formulate the spacecraft pursuit-evasion problem as a stealth pursuit strategy of motion camouflage,in which the pursuer tries to minimize a motion camouflage index defined in this paper.The Euler-Hill reference frame whose origin is set on the circular reference orbit is used to describe the dynamics.Based on the rule of motion camouflage,a guidance strategy in open-loop form to achieve motion camouflage index is derived in which the pursuer lies on the camouflage constraint line connecting the central spacecraft and evader.In order to dispose of the dependence on the evader acceleration in the open-loop guidance strategy,we further consider the motion camouflage pursuit problem within an infinite-horizon nonlinear quadratic differential game.The saddle point solution to the game is derived by using the state-dependent Riccati equation method,and the resulting closed-loop guidance strategy is effective in achieving motion camouflage.Simulations are performed to demonstrate the capabilities of the proposed guidance strategies for the pursuit–evasion game scenario.展开更多
Fragrant rice is favored worldwide by consumers and rice breeders,due to its full aroma and high nutritional value.Loss of function of the betaine aldehyde dehydrogenase gene(OsBADH2)leads to aroma in rice.Our previou...Fragrant rice is favored worldwide by consumers and rice breeders,due to its full aroma and high nutritional value.Loss of function of the betaine aldehyde dehydrogenase gene(OsBADH2)leads to aroma in rice.Our previous sequencing results showed that fragrant rice Chuan 7 belongs to badh2-E14 type,with a 1 bp insertion mutation in exon 14(Sun et al,2021),and this allele mutation is mainly distributed in Nepal and India(Kovach et al,2009).展开更多
Free space optical(FSO)communication has recently aroused great interest in academia due to its unique features,such as large transmission band,high data rates,and strong anti-electromagnetic interference.With the aim...Free space optical(FSO)communication has recently aroused great interest in academia due to its unique features,such as large transmission band,high data rates,and strong anti-electromagnetic interference.With the aim of evaluating the performance of an FSO communication system and extending the line-of-sight transmission distance,we propose an unmanned aerial vehicle(UAV)-assisted dual-hop FSO communication system equipped with amplifyand-forward protocol at the relay node.Specifically,we consider impairments of atmospheric absorption,pointing errors,atmospheric turbulence,and link interruptions due to angle-of-arrival fluctuations in the relay system.The Gamma-Gamma and Malaga distributions are used to model the influence of atmospheric turbulence on the source-to-UAV and UAVto-destination links,respectively.We derive closedform expressions of the probability density function(PDF)and cumulative distribution function(CDF)for the proposed communication system,in terms of the Meijer-G function.Based on the precise PDF and CDF,analytical expressions for the outage probability,average bit error rate,and ergodic capacity are proposed with the aid of the extended generalized bivariate Fox’s H function.Finally,we show that there is a match between the analytical results and numerical results,and we analyze the influence of the system and channel parameters on the performance.展开更多
基金supported by NASA(Grant Nos.80NSSC19K0844,80NSSC20K1670,80MSFC20C0019,and 80GSFC21M0002)support from NASA Goddard Space Flight Center internal funding programs(HIF,Internal Scientist Funding Model,and Internal Research and Development)。
文摘The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective launches in the near future,to specify glo bal magnetic reconnection modes for varying solar wind conditions.To suppo rt the success of these scientific missions,it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images.In this research,we introduce a new geometric equation that calculates the subsolar magnetopause position(RS)from a satellite position,the look direction of the instrument,and the angle at which the X-ray emission is maximized.Two assumptions are used in this method:(1)The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause,and(2)the magnetopause surface near the subsolar point is almost spherical and thus RSis nea rly equal to the radius of the magneto pause curvature.We create synthetic soft X-ray images by using the Open Geospace General Circulation Model(OpenGGCM)global magnetohydrodynamic model,the galactic background,the instrument point spread function,and Poisson noise.We then apply the fast Fourier transform and Gaussian low-pass filte rs to the synthetic images to re move noise and obtain accurate look angles for the soft X-ray pea ks.From the filte red images,we calculate RS and its accuracy for different LEXI locations,look directions,and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth.Our method estimates RS with an accuracy of<0.3 RE when the solar wind density exceeds>10 cm-3.The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields.The method ca ptures the magnetopause motion during southwa rd interplaneta ry magnetic field turnings.Consequently,the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind conditions.This technique will suppo rt the LEXI and SMILE missions in achieving their scientific o bjectives.
基金funding and support from the United Kingdom Space Agency(UKSA)the European Space Agency(ESA)+5 种基金funded and supported through the ESA PRODEX schemefunded through PRODEX PEA 4000123238the Research Council of Norway grant 223252funded by Spanish MCIN/AEI/10.13039/501100011033 grant PID2019-107061GB-C61funding and support from the Chinese Academy of Sciences(CAS)funding and support from the National Aeronautics and Space Administration(NASA)。
文摘The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States.
基金the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2022041)the National Natural Science Foundation of China(Grant Nos.42241155,41974205,42130204,and 42241133)+4 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2022A1515011698,2023A1515030132,and 2022A1515010257)the Shenzhen Science and Technology Research Program(Grant Nos.JCYJ20210324121412034 and JCYJ20210324121403009)the Shenzhen Key Laboratory Launching Project(Grant No.ZDSYS20210702140800001)the Joint Open Fund of Mengcheng National Geophysical Observatory(Grant No.MENGO-202315)the Macao Foundation,the pre-research Project on Civil Aerospace Technologies(Grant No.D020103)funded by the China National Space Administration,and the Chinese Academy of Sciences Center for Excellence in Comparative Planetology。
文摘Magnetic holes are magnetic depression structures that exist widely in many plasma environments.The magnetic holes with durations of>1 s in the solar wind at Mercury’s orbit have drawn much attention,but the properties of the magnetic holes with shorter durations are still unclear.Here,we investigate the magnetic holes with durations of 0.1-100 s in the upstream region of Mercury’s bow shock based on observations by the MESSENGER(MErcury Surface,Space ENvironment,GEochemistry,and Ranging)spacecraft.They can be divided into two groups according to the distribution of their duration:small-duration magnetic holes(SDMHs,<0.6 s)and large-duration magnetic holes(LDMHs,>0.6 s).The duration of each group approximately obeys a log-normal distribution with a median of~0.25 s and 3 s,respectively.Approximately 1.7%(32.6%)of the SDMHs(LDMHs)reduce the magnetic field strength by more than 50%.For both groups,some structures have a linear or quasi-linear polarization,whereas others have an elliptical polarization.The magnetic hole events in both groups tend to have a higher rate of occurrence when the interplanetary magnetic field strength is weaker.Their occurrence rates are also affected by Mercury’s foreshock,which can increase(decrease)the occurrence rate of the SDMHs(LDMHs).This finding suggests that Mercury’s foreshock might be one source of the SDMHs and that the foreshock can destroy some LDMHs.These observations suggest that a new group of magnetic holes with durations of<0.6 s exist in the upstream region of Mercury’s bow shock.
文摘The experimental research programs of 1950s, to understand the adsorption of CO on W surfaces, changed to ab initio studies in 2000s. The goals were to seek improved practical applications. Most of the studies were based on density functional theory. Many studies also used programs, such as VASP (Vienna Abinitio simulation package) and CPMD. The computational procedures used plane wave approximations. This needed studies with selection of K points and cutoff energy selection to assure convergence in energy calculations. Observations and analysis of papers published from 2006 to 2022 indicate that the cutoff energies were selected arbitrarily without any needed convergence studies. By selecting a published 2006 paper, this paper has clearly showed that an arbitrary selection of cutoff energy, such as 460 eV, is not in the range of, cutoff energies that assure convergence of energy calculations, with ab initio methods and have indicated correction procedures. .
基金NASA Goddard Space Flight Center,Chapman University and European Framework program #7 project PREEARTHQUAKE for their kind support
文摘We retrospectively analyzed the temporal and spatial variations of four different physical parameters characterizing the state of the atmosphere and ionosphere several days before the M9 Tohoku, Japan earthquake of March 11, 2011. The data include outgoing long wave radiation (OLR), GPS/TEC, lower Earth orbit ionospheric tomography and critical frequency foF2. Our first results show that on March 7th a rapid increase of emitted infrared radiation was observed from the satellite data and an anomaly developed near the epicenter. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting from this day in the lower ionosphere also there was confirmed an abnormal TEC variation over the epicenter. From March 3 to 11 a large increase in electron concentration was recorded at all four Japanese ground-based ionosondes, which returned to normal after the main earthquake. The joint preliminary analysis of atmospheric and ionospheric parameters during the M9 Tohoku, Japan earthquake has revealed the presence of related variations of these parameters implying their connection with the earthquake process. This study may lead to a better understanding of the response of the atmosphere/ionosphere to the great Tohoku earthquake.
基金supported by NSFC grants 41904156, 41974205, 41774171, 41574173, 41774167 and 41804157the Science and Technology Development Fund of Macao SAR (008/2016/A1 and 039/2013/A2)+3 种基金the China Postdoctoral Science Foundation (2019M651271)the financial support of the Shenzhen Science and Technology Research Program (JCYJ20170811154933612 and JCYJ20180306171918617)the 111 Project (B18017)supported by CAS Center for Excellence in Comparative Planetology
文摘With Venus Express magnetic field measurements at 32 Hz from 2006 to 2012, we investigate statistically the magnetic fluctuations in the near-Venusian space. The global spatial distribution of their spectral scaling features is presented in MHD and kinetic regimes. It can be observed that turbulence is a common phenomenon in the solar wind in both regimes. The solar wind MHD turbulence is modified at the Venusian bow shock;MHD turbulence is absent in the Venusian magnetosheath but present at the magnetosheath boundary layer. Pre-existing kinetic turbulence from the far upstream solar wind is modified in the near solar wind region, while kinetic turbulence can be extensively observed throughout the Venusian magnetosheath and in some regions of the induced magnetosphere. Our results reveal that, in the near-Venusian space, energy cascade can be developed at the boundary between magnetosheath and wake, and the turbulence-related dissipation of magnetic energy occurs extensively in the magnetosheath and the induced magnetosphere.
文摘Investigations of the effect of geomagnetic activity influence on the heart rhythm regulation of cosmonauts during the expeditions onboard the Soyuz spacecraft, and the MIR orbital space stations was carried out for various durations of flight in weightlessness and, under control of groups of cosmonauts who were inspected under flight conditions outside the geomagnetic disturbances and in ground preflight conditions, during disturbances and without them. The four series of analytical researches in which the data about changes of characteristics of heart rate variability are demonstrated for the first time the presence of specific effect of geomagnetic disturbances on the system of vegetative regulation of blood circulation of cosmonauts during the flight. The response of cosmonauts’ heart rhythm on the magnetic storm is depending on the initial functional background and, in particular, on the state of mechanisms of vegetative regulation (the duration of flight and adaptation to it).
基金Supported by the National Natural Science Foundation of China under Grant Nos 40874084,41074114 and 40921063the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KJCX2-YW-T13-3by the Project Supported by the Specialized Research Fund for State Key Laboratories.
文摘The bipolar electric field solitary(EFS)structures observed frequently in space plasmas by satellites have two different polarities,first positive electric field peak then negative(i.e.,positive/negative)and first negative then positive peak(i.e.,negative/positive).We provide the physical explanation on the polarity of observed bipolar EFS structures with an electrostatic ion fluid model.The results show that if initial electric field𝐸E_(0)>0,the polarity of the bipolar EFS structure will be positive/negative;and if𝐸E_(0)<0,the polarity of the bipolar EFS structure will be negative/positive.However,for a fixed polarity of the EFS,either positive/negative or negative/positive,if the satellite is located at the positive side of the EFS,the observed polarity should be positive/negative,if the satellite is located at the negative side of the EFS,the observed polarity should be negative/positive.Therefore,we provide a method to clarify the natural polarity of the EFS with observed polarity by satellites.Our results are significant to understand the physical process in space plasma with the satellite observation.
基金funded by the National Natural Science Foundation of China(NSFCGrant Nos.42204177,42274219,41974205,42130204,42241155,and 42241133)+5 种基金the Guangdong Basic and Applied Basic Research Foundation-Natural Science Foundation of Guangdong(Grant Nos.2022A1515010257,2022A1515011698,and 2023A1515030132)the Shenzhen Science and Technology Research Program(Grant Nos.JCYJ20210324121403009 and JCYJ20210324121412034)the Macao foundation,the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2022041)the Shenzhen Key Laboratory Launching Project(Grant No.ZDSYS20210702140800001)the pre-research project on Civil Aerospace Technologies(Grant No.D020103)funded by the China National Space Administration.YuanQiang Chen was also funded by China Postdoctoral Science Foundation(Grant No.2022M720944)supported by the Chinese Academy of Sciences Center for Excellence in Comparative Planetology.
文摘Geomagnetic storms can result in large magnetic field disturbances and intense currents in the magnetosphere and even on the ground.As an important medium of momentum and energy transport among the solar wind,magnetosphere,and ionosphere,field-aligned currents(FACs)can also be strengthened in storm times.This study shows the responses of FACs in the plasma sheet boundary layer(PSBL)observed by the Magnetospheric Multiscale(MMS)spacecraft in different phases of a large storm that lasted from May 27,2017,to May 29,2017.Most of the FACs were carried by electrons,and several FACs in the storm time also contained sufficient ion FACs.The FAC magnitudes were larger in the storm than in the quiet period,and those in the main phase were the strongest.In this case,the direction of the FACs in the main phase showed no preference for tailward or earthward,whereas the direction of the FACs in the recovery phase was mostly tailward.The results suggest that the FACs in the PSBL are closely related to the storm and could be driven by activities in the tail region,where the energy transported from the solar wind to the magnetosphere is stored and released as the storm is evolving.Thus,the FACs are an important medium of energy transport between the tail and the ionosphere,and the PSBL is a significant magnetosphere–ionosphere coupling region in the nightside.
基金supported by the NSFC(Grant Nos 42130204 and 42188101)the Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the support of the Tencent Foundation.
文摘The Mars Orbiter MAGnetometer(MOMAG)is a scientific instrument onboard the orbiter of China’s first mission for Mars—Tianwen-1.Since November 13,2021,it has been recording magnetic field data from the solar wind to the magnetic pile-up region surrounding Mars.Here we present its in-flight performance and first science results,based on its first one and one-half months’data.Comparing these early MOMAG observations to the magnetic field data in the solar wind from NASA’s Mars Atmosphere and Volatile EvolutioN(MAVEN)mission,we report that the MOMAG magnetic field data are at the same level in magnitude,and describe the same magnetic structures with similar variations in three components.We recognize 158 clear bow shock(BS)crossings in these MOMAG data;their locations match well statistically with the modeled average BS.We also identify and compare five pairs of datasets collected when Tianwen-1’s orbiter and the MAVEN probe made simultaneous BS crossings.These BS crossings confirm the global shape of modeled BS,as well as the south-north asymmetry of the Martian BS.Two cases presented in this paper suggest that the BS is probably more dynamic at flank than near the nose.So far,MOMAG performs well,and provides accurate magnetic field vectors.MOMAG is continuously scanning the magnetic field surrounding Mars.Data from MOMAG’s measurements complement data from MAVEN and will undoubt edly advance our understanding of the plasma environment of Mars.
基金supported,in part,by the National Natural Science Foundation of China(Nos.12272116 and 62088101)the Zhejiang Provincial Natural Science Foundation of China(Nos.LY22A020007 and LR20F030003)+1 种基金the Fundamental Research Funds for the Provincial Universities of Zhejiang,China(Nos.GK239909299001-014)the National Key Basic Research Strengthen Foundation of China(Nos.2021JCJQ-JJ-1183 and 2020-JCJQ-JJ-176)。
文摘This work is inspired by a stealth pursuit behavior called motion camouflage whereby a pursuer approaches an evader while the pursuer camouflages itself against a predetermined background.We formulate the spacecraft pursuit-evasion problem as a stealth pursuit strategy of motion camouflage,in which the pursuer tries to minimize a motion camouflage index defined in this paper.The Euler-Hill reference frame whose origin is set on the circular reference orbit is used to describe the dynamics.Based on the rule of motion camouflage,a guidance strategy in open-loop form to achieve motion camouflage index is derived in which the pursuer lies on the camouflage constraint line connecting the central spacecraft and evader.In order to dispose of the dependence on the evader acceleration in the open-loop guidance strategy,we further consider the motion camouflage pursuit problem within an infinite-horizon nonlinear quadratic differential game.The saddle point solution to the game is derived by using the state-dependent Riccati equation method,and the resulting closed-loop guidance strategy is effective in achieving motion camouflage.Simulations are performed to demonstrate the capabilities of the proposed guidance strategies for the pursuit–evasion game scenario.
基金supported by the National Natural Science Foundation of China(Grant No.32172000)Agricultural Science and Technology Innovation Project of Hunan Province,China(Grant No.2022CX07).
文摘Fragrant rice is favored worldwide by consumers and rice breeders,due to its full aroma and high nutritional value.Loss of function of the betaine aldehyde dehydrogenase gene(OsBADH2)leads to aroma in rice.Our previous sequencing results showed that fragrant rice Chuan 7 belongs to badh2-E14 type,with a 1 bp insertion mutation in exon 14(Sun et al,2021),and this allele mutation is mainly distributed in Nepal and India(Kovach et al,2009).
文摘Free space optical(FSO)communication has recently aroused great interest in academia due to its unique features,such as large transmission band,high data rates,and strong anti-electromagnetic interference.With the aim of evaluating the performance of an FSO communication system and extending the line-of-sight transmission distance,we propose an unmanned aerial vehicle(UAV)-assisted dual-hop FSO communication system equipped with amplifyand-forward protocol at the relay node.Specifically,we consider impairments of atmospheric absorption,pointing errors,atmospheric turbulence,and link interruptions due to angle-of-arrival fluctuations in the relay system.The Gamma-Gamma and Malaga distributions are used to model the influence of atmospheric turbulence on the source-to-UAV and UAVto-destination links,respectively.We derive closedform expressions of the probability density function(PDF)and cumulative distribution function(CDF)for the proposed communication system,in terms of the Meijer-G function.Based on the precise PDF and CDF,analytical expressions for the outage probability,average bit error rate,and ergodic capacity are proposed with the aid of the extended generalized bivariate Fox’s H function.Finally,we show that there is a match between the analytical results and numerical results,and we analyze the influence of the system and channel parameters on the performance.