期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
天然气调压站差压液化系统研究
1
作者 张泽国 陶加银 +2 位作者 张怀韬 黄峰 葛磊 《低温与超导》 CAS 北大核心 2023年第10期88-92,共5页
液化天然气(LNG)调峰方式因其调峰能力强,设备占地面积少等优点,是门站进行调压的有效补充。本文采用透平膨胀机替代传统的节流阀,设计了一套天然气差压液化系统,将管道的高压天然气进行降压后输送至城市管网,同时利用天然气膨胀后的冷... 液化天然气(LNG)调峰方式因其调峰能力强,设备占地面积少等优点,是门站进行调压的有效补充。本文采用透平膨胀机替代传统的节流阀,设计了一套天然气差压液化系统,将管道的高压天然气进行降压后输送至城市管网,同时利用天然气膨胀后的冷能获得LNG。文章对比了压缩机不同布置方式对液化率的影响,在设计系统中采用气源入口布置压缩机以提高天然气液化率,文中研究了气源压力、温度及流量对透平膨胀流程天然气液化率的影响,发现液化率会随着气源压力和流量的增大而增大,但会随着温度的升高液化率降低。 展开更多
关键词 天然气 压力能 回收 液化率 液化流程
原文传递
Predicting densities and elastic moduli of SiO_(2)-based glasses by machine learning 被引量:4
2
作者 Yong-Jie Hu Ge Zhao +8 位作者 Mingfei Zhang Bin Bin Tyler Del Rose Qian Zhao Qun Zu Yang Chen Xuekun Sun Maarten de Jong Liang Qi 《npj Computational Materials》 SCIE EI CSCD 2020年第1期1455-1467,共13页
Chemical design of SiO_(2)-based glasses with high elastic moduli and low weight is of great interest.However,it is difficult to find a universal expression to predict the elastic moduli according to the glass composi... Chemical design of SiO_(2)-based glasses with high elastic moduli and low weight is of great interest.However,it is difficult to find a universal expression to predict the elastic moduli according to the glass composition before synthesis since the elastic moduli are a complex function of interatomic bonds and their ordering at different length scales.Here we show that the densities and elastic moduli of SiO_(2)-based glasses can be efficiently predicted by machine learning(ML)techniques across a complex compositional space with multiple(>10)types of additive oxides besides SiO_(2).Our machine learning approach relies on a training set generated by high-throughput molecular dynamic(MD)simulations,a set of elaborately constructed descriptors that bridges the empirical statistical modeling with the fundamental physics of interatomic bonding,and a statistical learning/predicting model developed by implementing least absolute shrinkage and selection operator with a gradient boost machine(GBM-LASSO). 展开更多
关键词 GLASSES MODULI BRIDGES
原文传递
An efficient and accurate framework for calculating lattice thermal conductivity of solids:AFLOW-AAPL Automatic Anharmonic Phonon Library 被引量:5
3
作者 Jose J.Plata Pinku Nath +7 位作者 Demet Usanmaz Jesus Carrete Cormac Toher Maarten de Jong Mark Asta Marco Fornari Marco Buongiorno Nardelli Stefano Curtarolo 《npj Computational Materials》 SCIE EI 2017年第1期79-88,共10页
One of the most accurate approaches for calculating lattice thermal conductivity,κ_(l),is solving the Boltzmann transport equation starting from third-order anharmonic force constants.In addition to the underlying ap... One of the most accurate approaches for calculating lattice thermal conductivity,κ_(l),is solving the Boltzmann transport equation starting from third-order anharmonic force constants.In addition to the underlying approximations of ab-initio parameterization,two main challenges are associated with this path:high computational costs and lack of automation in the frameworks using this methodology,which affect the discovery rate of novel materials with ad-hoc properties.Here,the Automatic Anharmonic Phonon Library(AAPL)is presented.It efficiently computes interatomic force constants by making effective use of crystal symmetry analysis,it solves the Boltzmann transport equation to obtain κ_(l),and allows a fully integrated operation with minimum user intervention,a rational addition to the current high-throughput accelerated materials development framework AFLOW.An“experiment vs.theory”study of the approach is shown,comparing accuracy and speed with respect to other available packages,and for materials characterized by strong electron localization and correlation.Combining AAPL with the pseudo-hybrid functional ACBN0 is possible to improve accuracy without increasing computational requirements. 展开更多
关键词 properties. HARMONIC CALCULATING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部