This paper presents two n-channel organic heterojunction transistors with modified insulator by using hexadecafiuorophthalocyaninatocopper (F16CuPc)/copper phthalocyanine (CuPc) and F16CuPc/pentacene as the active...This paper presents two n-channel organic heterojunction transistors with modified insulator by using hexadecafiuorophthalocyaninatocopper (F16CuPc)/copper phthalocyanine (CuPc) and F16CuPc/pentacene as the active layers. Compared with a single-layer device, it reports that an improved field-effect mobility and a 6-fold higher drain current are observed. The highest mobility of 0.081 cm^2/(V. s) was obtained from F16CuPc/CuPc heterojunction devices. This result is attributed to the dual effects of the organic heterojunction and interface modification. Furthermore, for two heterojunction devices, the performance of the F16CuPc/CuPc-based transistor is better than that of F16CuPc/pentacene. This is attributed to the morphologic match of two organic components.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 60806007)the Shanghai ‘Post-Qi-Ming-Xing Plan’ for Young Scientists,China (Grant No. 07QA14023)the Shanghai Committee of Science and Technology (Grant Nos. 08DZ1140702 and 08520511200)
文摘This paper presents two n-channel organic heterojunction transistors with modified insulator by using hexadecafiuorophthalocyaninatocopper (F16CuPc)/copper phthalocyanine (CuPc) and F16CuPc/pentacene as the active layers. Compared with a single-layer device, it reports that an improved field-effect mobility and a 6-fold higher drain current are observed. The highest mobility of 0.081 cm^2/(V. s) was obtained from F16CuPc/CuPc heterojunction devices. This result is attributed to the dual effects of the organic heterojunction and interface modification. Furthermore, for two heterojunction devices, the performance of the F16CuPc/CuPc-based transistor is better than that of F16CuPc/pentacene. This is attributed to the morphologic match of two organic components.