In this paper, a new statistic model named Center-Distance Continuous Probability Model (CDCPM) for speech recognition is described, which is based on Center-Distance Normal (CDN) distribution. In a CDCPM, the probabi...In this paper, a new statistic model named Center-Distance Continuous Probability Model (CDCPM) for speech recognition is described, which is based on Center-Distance Normal (CDN) distribution. In a CDCPM, the probability transition matrix is omitted, and the observation probability density function (PDF) in each state is in the form of embedded multiple-model (EMM) based on the Nearest Neighbour rule. The experimental results on two giant real-world Chinese speech databases and a real-world continuous-manner 2000 phrase system show that this model is a powerful one. Also,a distance measure for CDCPMs is proposed which is based on the Bayesian minimum classification error (MCE) discrimination.展开更多
文摘In this paper, a new statistic model named Center-Distance Continuous Probability Model (CDCPM) for speech recognition is described, which is based on Center-Distance Normal (CDN) distribution. In a CDCPM, the probability transition matrix is omitted, and the observation probability density function (PDF) in each state is in the form of embedded multiple-model (EMM) based on the Nearest Neighbour rule. The experimental results on two giant real-world Chinese speech databases and a real-world continuous-manner 2000 phrase system show that this model is a powerful one. Also,a distance measure for CDCPMs is proposed which is based on the Bayesian minimum classification error (MCE) discrimination.