The study of diffuse ultraviolet(UV)background radiation is vital in the investigation of stellar and galactic evolution.Space-based UV observations are comprised of both foreground and background radiations.The foreg...The study of diffuse ultraviolet(UV)background radiation is vital in the investigation of stellar and galactic evolution.Space-based UV observations are comprised of both foreground and background radiations.The foreground emission in an observation is a result of solar contamination in the direction of observation.In our previous work,we modeled airglow(one of the major constituents of the foreground emission)as a function of10.7 cm Solar Flux and Sun Angle with great accuracy using GALEX deep observations.We adopt a similar methodology to validate the obtained model and run equivalent experiments here using far-UV(FUV)and nearUV(NUV)GALEX medium imaging surveys(MIS)with a total exposure time greater than 3300 s.We obtained a predictive model having excellent compatibility with the earlier model.Our analysis shows that the total foreground emission varies between 59 and 295 photon units in FUV whereas in NUV,it varies between 671 and1195 photon units depending upon the date and time of observation.We also noticed a strong correlation between the background emission and optical depth both in FUV and NUV,especially in the low density regions.This clearly indicates that the major contributor in diffuse background radiation is the starlight scattered by interstellar dust grains.展开更多
The paper reports the fabrication of Zn-doped TiO_2 nanotubes(Zn-TONT)/ZnO nanoflakes heterostructure for the first time,which shows improved performance as a photoanode in dye-sensitized solar cell(DSSC).The layered ...The paper reports the fabrication of Zn-doped TiO_2 nanotubes(Zn-TONT)/ZnO nanoflakes heterostructure for the first time,which shows improved performance as a photoanode in dye-sensitized solar cell(DSSC).The layered structure of this novel nanoporous structure has been analyzed unambiguously by Rutherford backscattering spectroscopy,scanning electron microscopy,and X-ray diffractometer.The cell using the heterostructure as photoanode manifests an enhancement of about an order in the magnitude of the short circuit current and a seven-fold increase in efficiency,over pure TiO_2 photoanodes.Characterizations further reveal that the Zn-TONT is preferentially oriented in [001] direction and there is a Ti metal-depleted interface layer which leads to better band alignment in DSSC.展开更多
Endosulfan, an organochlorine pesticide, is known for its toxicity and ability to accumulate in the environment. In India endosulfan was banned only in 2011 and hence toxic residues are still persistent in the environ...Endosulfan, an organochlorine pesticide, is known for its toxicity and ability to accumulate in the environment. In India endosulfan was banned only in 2011 and hence toxic residues are still persistent in the environment. The abilities of three plant species Chittaratha (Alpinia calcarata), Tulsi (Ocimum sanctum), and Lemongrass (Cymbopogon citratus) to remove endosulfan from soil in the absence and presence of zerovalent iron nanoparticles (nZVIs) (1000 mg/Kg of soil), i.e., by phytoremediation and nano-phytoremediation, were determined. Extracted soil samples from the experimental plot were analyzed using Gas Chromatograph with Electron Capture Detector (GC-ECD) and final dehalogenated product was confirmed by Mass Spectrometer (MS). A. calcarata had the best efficiency compared to the other two plant species and the efficiency decreased in the order A. calcarata > O. sanctum> C. citrates. The initial endosulfan removal rate was high (82% was removed within 7 days) when nano phytoremediation experiments were conducted with A. calcarata but then gradually decreased, probably because the activity of nZVI decreased over time. The nZVI endosulfan degradation mechanism appears to involve hydrogenolysis and sequential dehalogenation which was confirmed by GC-MS analysis. Only small amounts of endosulfan were accumulated in the plants because the added nZVIs might have promoted the reductive dechlorination of endosulfan.展开更多
Nowadays, utilization of biodegradable materials has become necessary in order to maintain global environmental and ecological balance. ‘Green’ composites offered the possible solution to waste disposal problems ass...Nowadays, utilization of biodegradable materials has become necessary in order to maintain global environmental and ecological balance. ‘Green’ composites offered the possible solution to waste disposal problems associated with traditional petroleum derived plastics. The use of plastics based on removable resources is enormous now a day for the development of true bio-composites. Fully biodegradable ‘Green’ textile composites have been prepared from Ecoflex and ramie fabric. Textile composites were fabricated from the Ecoflex polymer and the ramie fabric by hot compression molding technique. Interactions at the fiber–matrix interface and the compatibility between ramie fabric and Ecoflex polymer will affect the properties of the system. The mechanical property and barrier property of the composites were investigated. Static mechanical properties such as tensile strength, tensile modulus, and elongation at break of the textile bio-composites were analyzed. Sorption characteristics of water, oil and diesel in the textile composites were analyzed in order to determine its outdoor applications and the influence of macro fibers on the transport phenomena was investigated. The kinetics of sorption-diffusion process were investigated. Kinetic parameters such as n, k, diffusion coefficient, permeability, solubility parameter, % swelling index, etc., were analyzed. The water sorption mechanism in the textile composites was found to exhibit slight deviation from Fickian mode.展开更多
基金NASA's GALEX programSTScI is operated by the Association of Universities for Research in Astronomy,Inc.,under NASA contract NAS5-26555+1 种基金Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contractsthe support of DST-FIST。
文摘The study of diffuse ultraviolet(UV)background radiation is vital in the investigation of stellar and galactic evolution.Space-based UV observations are comprised of both foreground and background radiations.The foreground emission in an observation is a result of solar contamination in the direction of observation.In our previous work,we modeled airglow(one of the major constituents of the foreground emission)as a function of10.7 cm Solar Flux and Sun Angle with great accuracy using GALEX deep observations.We adopt a similar methodology to validate the obtained model and run equivalent experiments here using far-UV(FUV)and nearUV(NUV)GALEX medium imaging surveys(MIS)with a total exposure time greater than 3300 s.We obtained a predictive model having excellent compatibility with the earlier model.Our analysis shows that the total foreground emission varies between 59 and 295 photon units in FUV whereas in NUV,it varies between 671 and1195 photon units depending upon the date and time of observation.We also noticed a strong correlation between the background emission and optical depth both in FUV and NUV,especially in the low density regions.This clearly indicates that the major contributor in diffuse background radiation is the starlight scattered by interstellar dust grains.
基金UGC-DAE CSR,Indore,for funding through a collaborative project and SAIF IIT Bombay for the help with SEMsupported by the Michigan Space Grant Consortium+1 种基金by Hope CollegeDAE-BRNS for funding the preliminary works
文摘The paper reports the fabrication of Zn-doped TiO_2 nanotubes(Zn-TONT)/ZnO nanoflakes heterostructure for the first time,which shows improved performance as a photoanode in dye-sensitized solar cell(DSSC).The layered structure of this novel nanoporous structure has been analyzed unambiguously by Rutherford backscattering spectroscopy,scanning electron microscopy,and X-ray diffractometer.The cell using the heterostructure as photoanode manifests an enhancement of about an order in the magnitude of the short circuit current and a seven-fold increase in efficiency,over pure TiO_2 photoanodes.Characterizations further reveal that the Zn-TONT is preferentially oriented in [001] direction and there is a Ti metal-depleted interface layer which leads to better band alignment in DSSC.
文摘Endosulfan, an organochlorine pesticide, is known for its toxicity and ability to accumulate in the environment. In India endosulfan was banned only in 2011 and hence toxic residues are still persistent in the environment. The abilities of three plant species Chittaratha (Alpinia calcarata), Tulsi (Ocimum sanctum), and Lemongrass (Cymbopogon citratus) to remove endosulfan from soil in the absence and presence of zerovalent iron nanoparticles (nZVIs) (1000 mg/Kg of soil), i.e., by phytoremediation and nano-phytoremediation, were determined. Extracted soil samples from the experimental plot were analyzed using Gas Chromatograph with Electron Capture Detector (GC-ECD) and final dehalogenated product was confirmed by Mass Spectrometer (MS). A. calcarata had the best efficiency compared to the other two plant species and the efficiency decreased in the order A. calcarata > O. sanctum> C. citrates. The initial endosulfan removal rate was high (82% was removed within 7 days) when nano phytoremediation experiments were conducted with A. calcarata but then gradually decreased, probably because the activity of nZVI decreased over time. The nZVI endosulfan degradation mechanism appears to involve hydrogenolysis and sequential dehalogenation which was confirmed by GC-MS analysis. Only small amounts of endosulfan were accumulated in the plants because the added nZVIs might have promoted the reductive dechlorination of endosulfan.
文摘Nowadays, utilization of biodegradable materials has become necessary in order to maintain global environmental and ecological balance. ‘Green’ composites offered the possible solution to waste disposal problems associated with traditional petroleum derived plastics. The use of plastics based on removable resources is enormous now a day for the development of true bio-composites. Fully biodegradable ‘Green’ textile composites have been prepared from Ecoflex and ramie fabric. Textile composites were fabricated from the Ecoflex polymer and the ramie fabric by hot compression molding technique. Interactions at the fiber–matrix interface and the compatibility between ramie fabric and Ecoflex polymer will affect the properties of the system. The mechanical property and barrier property of the composites were investigated. Static mechanical properties such as tensile strength, tensile modulus, and elongation at break of the textile bio-composites were analyzed. Sorption characteristics of water, oil and diesel in the textile composites were analyzed in order to determine its outdoor applications and the influence of macro fibers on the transport phenomena was investigated. The kinetics of sorption-diffusion process were investigated. Kinetic parameters such as n, k, diffusion coefficient, permeability, solubility parameter, % swelling index, etc., were analyzed. The water sorption mechanism in the textile composites was found to exhibit slight deviation from Fickian mode.