期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Impacts of climate change mitigation on agriculture water use:A provincial analysis in China
1
作者 Chaoyi Guo Hancheng Dai +3 位作者 Xiaorui Liu Yazhen Wu Xiaoyu Liu Yong Liu 《Geography and Sustainability》 2020年第3期189-199,共11页
Agriculture consumes huge amounts of water in China and is profoundly affected by climate change.This study projects the agricultural water use towards 2030 under the climate change mitigation target at the provincial... Agriculture consumes huge amounts of water in China and is profoundly affected by climate change.This study projects the agricultural water use towards 2030 under the climate change mitigation target at the provincial level in China by linking a computable general equilibrium(CGE)model and a regression model.By solving the endogeneities amongst agricultural water use,output and climate factors,we explore how these variables affect water use and further predict future trends through soft-link with the IMED|CGE model.It is found that sunshine duration has a slightly positive impact on water use.Furthermore,agricultural output will significantly drive agricultural water use based on historical data of the past 16 years.Results also show that carbon reduction would have a trade-offor co-benefit effect on water use due to regional disparity.Provinces with increasing agricultural exports,such as Xinjiang and Ningxia,would anticipate considerable growth in agricultural water use induced by carbon reduction.The soft-link method proposed by this study could be applied for future studies that aim to incorporate natural and geographical factors into human activities,and vice versa,for assessing sustainable development policies in an integrated way. 展开更多
关键词 Climate change Agricultural water use Soft link IMED|CGE Regression model Co-benefit Trade-off
下载PDF
Reactive species regulation by interlayered Na^(+)/H^(+)of titanate nanotubes decorated Co(OH)_(2)hollow microsphere for peroxymonosulfate activation and gatifloxacin degradation
2
作者 Bin Zhou Long Chen +5 位作者 Fan Li Weiliang Sun Zhicheng Pan Yumei Peng Lian Qiu Wen Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第12期263-268,共6页
Emerging organic pollutants(EoPs)in water are of great concern due to their high environmental risk,so urgent technologies are needed for effective removal of those pollutants.Herein,a heterogeneous advanced oxidation... Emerging organic pollutants(EoPs)in water are of great concern due to their high environmental risk,so urgent technologies are needed for effective removal of those pollutants.Herein,a heterogeneous advanced oxidation process(AoP)of peroxymonosulfate(PMS)activation by functional material was developed for degradation of a typical antibiotic,gatifloxacin(GAT).The reactive species including sulfate radical(SO^(4)^(·-))and singlet oxygen(^(1)O_(2))in this AOP were regulated by interlayered ions(Na^(+)/H^(+))of titanate nanotubes that supported on Co(OH)_(2)hollow microsphere.Both the Na-type(NaTi-CoHS)and H-type(HTi-CoHS)materials achieved efficient PMS activation for GAT degradation,and HTi-CoHS even exhibited a relatively high degradation efficiency of 96.6%within 5 min.Co(OH)_(2)was considered the key component for generation of SO_(4)^(·-)after PMS activation,while hydrogen titanate nanotubes(H-TNTs)promoted the transformation of peroxysulfate radical(SO_(5)^(·-))to ^(1)O_(2) by hydrogen bond interaction.Therefore,when the interlayer ion of TNTs transformed from Na^(+) to H^(+),more ^(1)O_(2) was produced for organic pollutant degradation.H-TNTs with lower symmetry preferred to adsorb PMS molecules to achieve interlayer electron transport through hydrogen bonding,rather than electrostatic interaction of Na^(+) for Na-TNTs.In addition,the degradation pathway of GAT mainly proceeded by the cleavage of C-N bond at the 8 N site of the piperazine ring,which was confirmed by condensed Fukui index and mass spectrographic analysis.This work gives new sights into the regulation of reactive species in AoPs by the composition of material and promotes the understanding of pollutant degradation mechanisms in water treatment process. 展开更多
关键词 Heterogeneous catalysis Peroxymonosulfate activation Sulfate radical Singlet oxygen Antibiotic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部