As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts...As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts with the fuzzy lack of market-oriented mechanisms for energy storage,the principle of market-oriented operation has not been embodied,and there is no unified and systematic analytical framework for the business model.However,the dispatch management model of energy storage in actual power system operation is not clear.Still,the specific scheduling process and energy storage strategy on the source-load-network side could be more specific,and there needs to be a greater understanding of the collaborative scheduling process of the multilevel scheduling center.On this basis,this paper reviews the energy storage operation model and market-based incentive mechanism,For different functional types and installation locations of energy storage within the power system,the operational models and existing policies for energy storage participation in the market that are adapted to multiple operating states are summarized.From the point of view of the actual scheduling and operation management of energy storage in China,an energy storage regulation and operation management model based on“national,provincial,and local”multilevel coordination is proposed,as well as key technologies in the interactive scenarios of source-load,network and storage.展开更多
This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure o...This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.展开更多
The general work requirements of the State Grid Corporation in 2007 are, pursuant to the ideology of scientific development, to insist on the policy of simultaneous development in capital construction and technical re...The general work requirements of the State Grid Corporation in 2007 are, pursuant to the ideology of scientific development, to insist on the policy of simultaneous development in capital construction and technical renovation, to carry out group operation, intensified development, careful management and standardized construction, to strengthen backing of science, technology and talented personnel, to speed up the transformation on development modes of the corporation and the power grid, and to create a harmonious enterprise in an all-round way as a strategy of development.展开更多
A high proportion of variable renewable energy(VRE)is one of the most significant characteristics of China’s future power system under the"dual carbon"target.However,wind and solar power units are more unco...A high proportion of variable renewable energy(VRE)is one of the most significant characteristics of China’s future power system under the"dual carbon"target.However,wind and solar power units are more uncontrollable and less supportive for power system stability than traditional thermal power units,due to their susceptibility to the weather and the grid connection of power electronics.Therefore,as the capacity and generation of VRE grow rapidly and even dominate the power structure,the power system’s ability to deal with disturbances will continue to decrease.展开更多
With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage co...With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.展开更多
Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenario...Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenarios,which threatens the robustness of stochastic unit commitment and hinders its application. This paper providesa stochastic unit commitment with dynamic scenario clustering based on multi-parametric programming andBenders decomposition. The stochastic unit commitment is solved via the Benders decomposition, which decouplesthe primal problem into the master problem and two types of subproblems. In the master problem, the committedgenerator is determined, while the feasibility and optimality of generator output are checked in these twosubproblems. Scenarios are dynamically clustered during the subproblem solution process through the multiparametric programming with respect to the solution of the master problem. In other words, multiple scenariosare clustered into several representative scenarios after the subproblem is solved, and the Benders cut obtainedby the representative scenario is generated for the master problem. Different from the conventional stochasticunit commitment, the proposed approach integrates scenario clustering into the Benders decomposition solutionprocess. Such a clustering approach could accurately cluster representative scenarios that have impacts on theunit commitment. The proposed method is tested on a 6-bus system and the modified IEEE 118-bus system.Numerical results illustrate the effectiveness of the proposed method in clustering scenarios. Compared withthe conventional clustering method, the proposed method can accurately select representative scenarios whilemitigating computational burden, thus guaranteeing the robustness of unit commitment.展开更多
Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluat...Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluate its influence on the voltage interaction between VSC-HVDC and line commutated converter based high voltage direct current(LCC-HVDC),this paper proposes a hybrid multi-infeed interaction factor(HMIIF)calculation method considering the voltage regulation control characteristics of VSC-HVDC.Firstly,for a hybrid multi-infeed high voltage direct current system,an additional equivalent operating admittance matrix is constructed to characterize HVDC equipment characteristics under small disturbance.Secondly,based on the characteristic curve between the reactive power and the voltage of a certain VSC-HVDC project,the additional equivalent operating admittance of VSC-HVDC is derived.The additional equivalent operating admittance matrix calculation method is proposed.Thirdly,the equivalent bus impedance matrix is obtained by modifying the alternating current(AC)system admittance matrix with the additional equivalent operating admittance matrix.On this basis,the HMIIF calculation method based on the equivalent bus impedance ratio is proposed.Finally,the effectiveness of the proposed method is verified in a hybrid dual-infeed high voltage direct current system constructed in Power Systems Computer Aided Design(PSCAD),and the influence of voltage regulation control on HMIIF is analyzed.展开更多
The penetration of new energy sources such as wind power is increasing,which consequently increases the occurrence rate of subsynchronous oscillation events.However,existing subsynchronous oscillation source-identific...The penetration of new energy sources such as wind power is increasing,which consequently increases the occurrence rate of subsynchronous oscillation events.However,existing subsynchronous oscillation source-identification methods primarily analyze fixed-mode oscillations and rarely consider time-varying features,such as frequency drift,caused by the random volatility of wind farms when oscillations occur.This paper proposes a subsynchronous oscillation sourcelocalization method that involves an enhanced short-time Fourier transform and a convolutional neural network(CNN).First,an enhanced STFT is performed to secure high-resolution time-frequency distribution(TFD)images from the measured data of the generation unit ports.Next,these TFD images are amalgamated to form a subsynchronous oscillation feature map that serves as input to the CNN to train the localization model.Ultimately,the trained CNN model realizes the online localization of subsynchronous oscillation sources.The effectiveness and accuracy of the proposed method are validated via multimachine system models simulating forced and natural oscillation events using the Power Systems Computer Aided Design platform.Test results show that the proposed method can localize subsynchronous oscillation sources online while considering unpredictable fluctuations in wind farms,thus providing a foundation for oscillation suppression in practical engineering scenarios.展开更多
In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order...In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order to improve the hydrogen utilization rate of hydrogen storage system in the process of participating in the power grid operation,and speed up the process of electric-hydrogen-electricity conversion.This article provides a detailed introduction to the mathematical and electrical models of various components of the hydrogen storage unit,and also establishes a charging and discharging efficiency model that considers the temperature and internal gas partial pressure of the hydrogen storage unit.These models are of great significance for studying and optimizing gas storage technology.Through these models,the performance of gas storage units can be better understood and improved.These studies are very helpful for improving energy storage efficiency and sustainable development.The factors affecting the charge-discharge efficiency of hydrogen storage units are analyzed.By integrating the models of each unit and considering the capacity degradation of the hydrogen storage system,we can construct an efficiency model for a large hydrogen storage system and power conversion system.In addition,the simulation models of the hydrogen production system and hydrogen consumption system were established in MATLAB/Simulink.The accuracy and effectiveness of the simulation model were proved by comparing the output voltage variation curve of the simulation with the polarization curve of the typical hydrogen production system and hydrogen consumption system.The results show that the charge-discharge efficiency of the hydrogen storage unit increases with the increase of operating temperature,and H2 and O2 partial voltage have little influence on the charge-discharge efficiency.In the process of power conversion system converter rectification operation,its efficiency decreases with the increase of temperature,while in the process of inverter operation,power conversion system efficiency increases with the increase of temperature.Combined with the efficiency of each hydrogen storage unit and power conversion system converter,the upper limit of the capacity loss of different hydrogen storage units was set.The optimal charge-discharge efficiency of the hydrogen storage system was obtained by using the Cplex solver at 36.46%and 66.34%.展开更多
The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the la...The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the largest throughout the world.In addition,the integration and utilization of renewable energy in this grid is a great benchmark for other countries and can help promote energy transformation and achieve a high proportion of renewable energy consumption.Based on the analysis of the existing status of the European interconnected power grid and the development history of this power grid,this paper summarizes four key development stages of the European power grid.In addition,the characteristics of each stage and the development prospect of the European power grid are analyzed.On this basis,this paper gives suggestions for the development and construction of China’s energy internet;this can provide valuable reference for further studies on China’s energy internet.展开更多
This paper introduces the implementation and data analysis associated with a state-wide power quality monitoring and analysis system in China. Corporation specifications on power quality monitors as well as on communi...This paper introduces the implementation and data analysis associated with a state-wide power quality monitoring and analysis system in China. Corporation specifications on power quality monitors as well as on communication protocols are formulated for data transmission. Big data platform and related technologies are utilized for data storage and computation. Compliance verification analysis and a power quality performance assessment are conducted, and a visualization tool for result presentation is finally presented.展开更多
In this paper, the international status of the research on the technical standards of smart grids is overviewed. An approach using the SLO principle to establish the technical standard system of strong & smart gri...In this paper, the international status of the research on the technical standards of smart grids is overviewed. An approach using the SLO principle to establish the technical standard system of strong & smart grids is put forward. A four-layered structure for the system is expounded, which consists of 8 domains, 26 technical fields, 92 standard series and hundreds of standards.展开更多
Promotion of the power industry is an important part of the strategy of the national energy development. Power is an important link in the chain of energy industry. Considering the requirements of sustainable energy d...Promotion of the power industry is an important part of the strategy of the national energy development. Power is an important link in the chain of energy industry. Considering the requirements of sustainable energy development in China, to accelerate the construction of a national power grid based on ultra-high voltage trunks and coordinately developed power grids at all levels may solve the vital problems being faced in energy development It is also significant for creating a system of stable, economic, clean and safe energy supply.展开更多
With the development of technology and people' s knowledge level, and the evolution of the economic model, human resources has become the most important resource in the development of enterprise and economy, its impo...With the development of technology and people' s knowledge level, and the evolution of the economic model, human resources has become the most important resource in the development of enterprise and economy, its importance has been recognized by the society and more and more enterprises. How to make human resource management an important role and how to motivate staffs' spirit of dedication, has become an important task in the modem enterprise management. In this paper, by studying the function of enterprise culture construction and its relationship with human resource management, this article put forward a new model which enterprise human resource management should be equipped with under the new economic conditions.展开更多
Performance management has become a competitive advantage of enterprises to cultivate core competitiveness of strategic initiatives, but how to act performance management out scientifically has been difficult. An uncl...Performance management has become a competitive advantage of enterprises to cultivate core competitiveness of strategic initiatives, but how to act performance management out scientifically has been difficult. An unclear understanding of the various issues often results in improper handling counterproductive. Thus, we should analyze human resource performance management problems and their causes, and only on this basis can we establish and implement effective hunlan resource management system dynamic performance during the difficulties and the main factors that should be considered to elaborate.展开更多
Modern power systems are typically characterized with renewable energies and smart grids.Their developments should be kept at a compatible pace with each other.According to the different structures of the power indust...Modern power systems are typically characterized with renewable energies and smart grids.Their developments should be kept at a compatible pace with each other.According to the different structures of the power industry,such as generation,transmission,distribution,consumption and dispatching,a comprehensive evaluation system for coordinated development of renewable energy and smart grid in"3 levels,4 sections,15 targets"is created.The index system of coordinated development is important to determine the priorities and key areas in smart grids and renewable energies.By the index system of coordinated development,this paper evaluates the status of renewable energy and grid development,and their degree of coordination in China.A quantitative evaluation method to determine the level of coordination between China's renewable energies and smart grids is developed.The total and component coordination levels in China are calculated by an analytic hierarchy process.In conclusion,the degree of coordination in transmission and dispatching is higher, but the extent of electricity consumption is lowest.Therefore,the consumption section should be the first to develop within China.展开更多
When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power refer...When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power reference signal search method based on fuzzy control,which is an improvement to the climbing search method.A neural network-based parameter regulator is proposed to address external wind speed fluctuations,where the parameters of a proportional-integral controller is adjusted to accurately monitor the maximum power point under different wind speed conditions.Finally,the effectiveness of this method is verified via Simulink simulation.展开更多
Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents...Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed.展开更多
基金the North China Branch of State Grid Corporation of China,Contract No.SGNC0000BGWT2310175.
文摘As a flexible resource,energy storage plays an increasingly significant role in stabilizing and supporting the power system,while providing auxiliary services.Still,the current high demand for energy storage contrasts with the fuzzy lack of market-oriented mechanisms for energy storage,the principle of market-oriented operation has not been embodied,and there is no unified and systematic analytical framework for the business model.However,the dispatch management model of energy storage in actual power system operation is not clear.Still,the specific scheduling process and energy storage strategy on the source-load-network side could be more specific,and there needs to be a greater understanding of the collaborative scheduling process of the multilevel scheduling center.On this basis,this paper reviews the energy storage operation model and market-based incentive mechanism,For different functional types and installation locations of energy storage within the power system,the operational models and existing policies for energy storage participation in the market that are adapted to multiple operating states are summarized.From the point of view of the actual scheduling and operation management of energy storage in China,an energy storage regulation and operation management model based on“national,provincial,and local”multilevel coordination is proposed,as well as key technologies in the interactive scenarios of source-load,network and storage.
基金supported by the State Grid Science and Technology Project (No.52999821N004)。
文摘This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.
文摘The general work requirements of the State Grid Corporation in 2007 are, pursuant to the ideology of scientific development, to insist on the policy of simultaneous development in capital construction and technical renovation, to carry out group operation, intensified development, careful management and standardized construction, to strengthen backing of science, technology and talented personnel, to speed up the transformation on development modes of the corporation and the power grid, and to create a harmonious enterprise in an all-round way as a strategy of development.
基金support from the Science and Technology Project of the State Grid Corporation of China,titled Research on the Flexibility Resource Requirements of a High-Resilience Power System(5100-202355762A-3-5-YS)。
文摘A high proportion of variable renewable energy(VRE)is one of the most significant characteristics of China’s future power system under the"dual carbon"target.However,wind and solar power units are more uncontrollable and less supportive for power system stability than traditional thermal power units,due to their susceptibility to the weather and the grid connection of power electronics.Therefore,as the capacity and generation of VRE grow rapidly and even dominate the power structure,the power system’s ability to deal with disturbances will continue to decrease.
基金supported by Science and Technology Project of SGCC(SGSW0000FZGHBJS2200070)。
文摘With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.
基金the Science and Technology Project of State Grid Corporation of China,Grant Number 5108-202304065A-1-1-ZN.
文摘Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenarios,which threatens the robustness of stochastic unit commitment and hinders its application. This paper providesa stochastic unit commitment with dynamic scenario clustering based on multi-parametric programming andBenders decomposition. The stochastic unit commitment is solved via the Benders decomposition, which decouplesthe primal problem into the master problem and two types of subproblems. In the master problem, the committedgenerator is determined, while the feasibility and optimality of generator output are checked in these twosubproblems. Scenarios are dynamically clustered during the subproblem solution process through the multiparametric programming with respect to the solution of the master problem. In other words, multiple scenariosare clustered into several representative scenarios after the subproblem is solved, and the Benders cut obtainedby the representative scenario is generated for the master problem. Different from the conventional stochasticunit commitment, the proposed approach integrates scenario clustering into the Benders decomposition solutionprocess. Such a clustering approach could accurately cluster representative scenarios that have impacts on theunit commitment. The proposed method is tested on a 6-bus system and the modified IEEE 118-bus system.Numerical results illustrate the effectiveness of the proposed method in clustering scenarios. Compared withthe conventional clustering method, the proposed method can accurately select representative scenarios whilemitigating computational burden, thus guaranteeing the robustness of unit commitment.
基金supported by the Technology Project of the State Grid Corporation Headquarters Management(Contract No.5100-202158467A-0-0-00).
文摘Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluate its influence on the voltage interaction between VSC-HVDC and line commutated converter based high voltage direct current(LCC-HVDC),this paper proposes a hybrid multi-infeed interaction factor(HMIIF)calculation method considering the voltage regulation control characteristics of VSC-HVDC.Firstly,for a hybrid multi-infeed high voltage direct current system,an additional equivalent operating admittance matrix is constructed to characterize HVDC equipment characteristics under small disturbance.Secondly,based on the characteristic curve between the reactive power and the voltage of a certain VSC-HVDC project,the additional equivalent operating admittance of VSC-HVDC is derived.The additional equivalent operating admittance matrix calculation method is proposed.Thirdly,the equivalent bus impedance matrix is obtained by modifying the alternating current(AC)system admittance matrix with the additional equivalent operating admittance matrix.On this basis,the HMIIF calculation method based on the equivalent bus impedance ratio is proposed.Finally,the effectiveness of the proposed method is verified in a hybrid dual-infeed high voltage direct current system constructed in Power Systems Computer Aided Design(PSCAD),and the influence of voltage regulation control on HMIIF is analyzed.
基金supported by the Science and Technology Project of State Grid Corporation of China(5100202199536A-0-5-ZN)。
文摘The penetration of new energy sources such as wind power is increasing,which consequently increases the occurrence rate of subsynchronous oscillation events.However,existing subsynchronous oscillation source-identification methods primarily analyze fixed-mode oscillations and rarely consider time-varying features,such as frequency drift,caused by the random volatility of wind farms when oscillations occur.This paper proposes a subsynchronous oscillation sourcelocalization method that involves an enhanced short-time Fourier transform and a convolutional neural network(CNN).First,an enhanced STFT is performed to secure high-resolution time-frequency distribution(TFD)images from the measured data of the generation unit ports.Next,these TFD images are amalgamated to form a subsynchronous oscillation feature map that serves as input to the CNN to train the localization model.Ultimately,the trained CNN model realizes the online localization of subsynchronous oscillation sources.The effectiveness and accuracy of the proposed method are validated via multimachine system models simulating forced and natural oscillation events using the Power Systems Computer Aided Design platform.Test results show that the proposed method can localize subsynchronous oscillation sources online while considering unpredictable fluctuations in wind farms,thus providing a foundation for oscillation suppression in practical engineering scenarios.
基金supported by the Jilin Province Higher Education TeachingReform Research Project Funding(Contract No.2020285O73B005E).
文摘In the existing power system with a large-scale hydrogen storage system,there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system.In order to improve the hydrogen utilization rate of hydrogen storage system in the process of participating in the power grid operation,and speed up the process of electric-hydrogen-electricity conversion.This article provides a detailed introduction to the mathematical and electrical models of various components of the hydrogen storage unit,and also establishes a charging and discharging efficiency model that considers the temperature and internal gas partial pressure of the hydrogen storage unit.These models are of great significance for studying and optimizing gas storage technology.Through these models,the performance of gas storage units can be better understood and improved.These studies are very helpful for improving energy storage efficiency and sustainable development.The factors affecting the charge-discharge efficiency of hydrogen storage units are analyzed.By integrating the models of each unit and considering the capacity degradation of the hydrogen storage system,we can construct an efficiency model for a large hydrogen storage system and power conversion system.In addition,the simulation models of the hydrogen production system and hydrogen consumption system were established in MATLAB/Simulink.The accuracy and effectiveness of the simulation model were proved by comparing the output voltage variation curve of the simulation with the polarization curve of the typical hydrogen production system and hydrogen consumption system.The results show that the charge-discharge efficiency of the hydrogen storage unit increases with the increase of operating temperature,and H2 and O2 partial voltage have little influence on the charge-discharge efficiency.In the process of power conversion system converter rectification operation,its efficiency decreases with the increase of temperature,while in the process of inverter operation,power conversion system efficiency increases with the increase of temperature.Combined with the efficiency of each hydrogen storage unit and power conversion system converter,the upper limit of the capacity loss of different hydrogen storage units was set.The optimal charge-discharge efficiency of the hydrogen storage system was obtained by using the Cplex solver at 36.46%and 66.34%.
基金funded by the State Grid Science and Technology Research Program:“Research on coordination development mode and reliability evaluation of source,network,load and storage considering the safety requirements(No.B3440818K005)”
文摘The European power grid is one of the largest regional interconnected power grids in the world.It realizes a multinational grid operation,which is rare.The total installed capacity of the European power grid is the largest throughout the world.In addition,the integration and utilization of renewable energy in this grid is a great benchmark for other countries and can help promote energy transformation and achieve a high proportion of renewable energy consumption.Based on the analysis of the existing status of the European interconnected power grid and the development history of this power grid,this paper summarizes four key development stages of the European power grid.In addition,the characteristics of each stage and the development prospect of the European power grid are analyzed.On this basis,this paper gives suggestions for the development and construction of China’s energy internet;this can provide valuable reference for further studies on China’s energy internet.
基金supported by the State Grid Science and Technology Project (GEIRI-DL-71-17-002)
文摘This paper introduces the implementation and data analysis associated with a state-wide power quality monitoring and analysis system in China. Corporation specifications on power quality monitors as well as on communication protocols are formulated for data transmission. Big data platform and related technologies are utilized for data storage and computation. Compliance verification analysis and a power quality performance assessment are conducted, and a visualization tool for result presentation is finally presented.
文摘In this paper, the international status of the research on the technical standards of smart grids is overviewed. An approach using the SLO principle to establish the technical standard system of strong & smart grids is put forward. A four-layered structure for the system is expounded, which consists of 8 domains, 26 technical fields, 92 standard series and hundreds of standards.
文摘Promotion of the power industry is an important part of the strategy of the national energy development. Power is an important link in the chain of energy industry. Considering the requirements of sustainable energy development in China, to accelerate the construction of a national power grid based on ultra-high voltage trunks and coordinately developed power grids at all levels may solve the vital problems being faced in energy development It is also significant for creating a system of stable, economic, clean and safe energy supply.
文摘With the development of technology and people' s knowledge level, and the evolution of the economic model, human resources has become the most important resource in the development of enterprise and economy, its importance has been recognized by the society and more and more enterprises. How to make human resource management an important role and how to motivate staffs' spirit of dedication, has become an important task in the modem enterprise management. In this paper, by studying the function of enterprise culture construction and its relationship with human resource management, this article put forward a new model which enterprise human resource management should be equipped with under the new economic conditions.
文摘Performance management has become a competitive advantage of enterprises to cultivate core competitiveness of strategic initiatives, but how to act performance management out scientifically has been difficult. An unclear understanding of the various issues often results in improper handling counterproductive. Thus, we should analyze human resource performance management problems and their causes, and only on this basis can we establish and implement effective hunlan resource management system dynamic performance during the difficulties and the main factors that should be considered to elaborate.
文摘Modern power systems are typically characterized with renewable energies and smart grids.Their developments should be kept at a compatible pace with each other.According to the different structures of the power industry,such as generation,transmission,distribution,consumption and dispatching,a comprehensive evaluation system for coordinated development of renewable energy and smart grid in"3 levels,4 sections,15 targets"is created.The index system of coordinated development is important to determine the priorities and key areas in smart grids and renewable energies.By the index system of coordinated development,this paper evaluates the status of renewable energy and grid development,and their degree of coordination in China.A quantitative evaluation method to determine the level of coordination between China's renewable energies and smart grids is developed.The total and component coordination levels in China are calculated by an analytic hierarchy process.In conclusion,the degree of coordination in transmission and dispatching is higher, but the extent of electricity consumption is lowest.Therefore,the consumption section should be the first to develop within China.
基金supported partially by the National Natural Science Foundation of China under Grant 61503348the Hubei Provincial Natural Science Foundation of China under Grant 2015CFA010the 111 project under Grant B17040
文摘When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power reference signal search method based on fuzzy control,which is an improvement to the climbing search method.A neural network-based parameter regulator is proposed to address external wind speed fluctuations,where the parameters of a proportional-integral controller is adjusted to accurately monitor the maximum power point under different wind speed conditions.Finally,the effectiveness of this method is verified via Simulink simulation.
基金supported by the Science and Technology Project of Central China Branch of State Grid Corporation of China under 5214JS220010.
文摘Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed.