期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Economic Dispatch with High Penetration of Wind Power Using Extreme Learning Machine Assisted Group Search Optimizer with Multiple Producers Considering Upside Potential and Downside Risk
1
作者 Yuanzheng Li Jingjing Huang +4 位作者 Yun Liu Zhixian Ni Yu Shen Wei Hu Lei Wu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第6期1459-1471,共13页
The power system with high penetration of wind power is gradually formed,and it would be difficult to determine the optimal economic dispatch(ED)solution in such an environment with significant uncertainties.This pape... The power system with high penetration of wind power is gradually formed,and it would be difficult to determine the optimal economic dispatch(ED)solution in such an environment with significant uncertainties.This paper proposes a multi-objective ED(MuOED)model,in which the expected generation cost(EGC),upside potential(USP),and downside risk(DSR)are simultaneously considered.The heterogeneous indices of upside potential and downside risk mean the potential economic gains and losses brought by high penetration of wind power,respectively.Then,the MuOED model is formulated as a tri-objective optimization problem,which is related to uncertain multi-criteria decision-making against uncertainties.Afterwards,the tri-objective optimization problem is solved by an extreme learning machine(ELM)assisted group search optimizer with multiple producers(GSOMP).Pareto solutions are obtained to reflect the trade-off among the expected generation cost,the upside potential,and the downside risk.And a fuzzy decision-making method is used to choose the final ED solution.Case studies based on the Midwestern US power system verify the effectiveness of the proposed MuOED model and the developed optimization algorithm. 展开更多
关键词 Economic dispatch(ED) wind power extreme learning machine optimization algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部