期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Low-Frequency Oscillation Analysis of Grid-Connected VSG System Considering Multi-Parameter Coupling
1
作者 Shengyang Lu Tong Wang +6 位作者 Yuanqing Liang Shanshan Cheng Yupeng Cai Haixin Wang Junyou Yang Yuqiu Sui Luyu Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2373-2386,共14页
With the increasing integration of new energy generation into the power system and the massive withdrawal of traditional fossil fuel generation,the power system is faced with a large number of stability problems.The p... With the increasing integration of new energy generation into the power system and the massive withdrawal of traditional fossil fuel generation,the power system is faced with a large number of stability problems.The phenomenon of low-frequency oscillation caused by lack of damping and moment of inertia is worth studying.In recent years,virtual synchronous generator(VSG)technique has been developed rapidly because it can provide considerable damping and moment of inertia.While improving the stability of the system,it also inevitably causes the problem of active power oscillation,especially the low mutual damping between the VSG and the power grid will make the oscillation more severe.The traditional time-domain state-space method cannot reflect the interaction among state variables and study the interaction between different nodes and branches of the power grid.In this paper,a frequency-domain method for analyzing low-frequency oscillations considering VSG parameter coupling is proposed.First,based on the rotor motion equation of the synchronous generator(SG),a secondorder VSG model and linearized power-frequency control loop model are established.Then,the differences and connections between the coupling of key VSG parameters and low-frequency oscillation characteristics are studied through frequency domain analysis.The path and influencemechanism of a VSG during low-frequency power grid oscillations are illustrated.Finally,the correctness of the theoretical analysis model is verified by simulation. 展开更多
关键词 Inverter power supply low-frequency oscillation virtual synchronous generator rotor motor equation
下载PDF
Microstructure evolution and tensile behavior of balanced Al−Mg−Si alloy with various homogenization parameters
2
作者 Dong JIN Hong-ying LI +5 位作者 Zhi-xiang ZHU Chang-long YANG Yao-jun MIAO Chao XU Bao-an CHEN Zhen LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3536-3553,共18页
The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,... The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,electron probe microanalyzer,differential scanning calorimetry,electrical conductivity test,and tensile test.The results show that Mg_(2)Si andβ-AlFeSi are the main intermetallic compounds in the as-cast structure,and Mg solute microsegregation is predominant inside the dendrite cell.The prediction of the full dissolution time of Mg_(2)Si by a kinetic model is consistent with the experiment.Theβ-AlFeSi in the alloy exhibits high thermal stability and mainly undergoes dissolution and coarsening during homogenization at 560℃,and only a small portion is converted toα-AlFeSi.The optimal homogenization parameters are determined as 560℃and 360 min,when considering the evolution of microstructure and resource savings.Both the strength and ductility of the alloy increased after homogenization. 展开更多
关键词 Al−Mg−Si alloy HOMOGENIZATION kinetic model Fe-bearing phase tensile behavior
下载PDF
Analysis of System Value Evolution Trends of Energy Storage in Decarbonization Process
3
作者 Mo Zhou Jingming Zhao +3 位作者 Zili Chen Qiushi Fang Hua Li Zhaoyuan Wu 《Energy Engineering》 EI 2024年第10期3037-3053,共17页
With the continuous expansion of the scale of renewable energy installation,the demand for energy storage has increased significantly.However,there are significant differences in the value of energy storage in differe... With the continuous expansion of the scale of renewable energy installation,the demand for energy storage has increased significantly.However,there are significant differences in the value of energy storage in different scenarios,and the phenomenon of diminishing marginal benefits of energy storage is becoming more apparent.Therefore,themulti-dimensional value evolution trend of energy storage has become a key issue.This study selects indicators from three dimensions of energy storage:low-carbon emission reduction,smoothing wind and solar power fluctuations,and saving generation costs,quantifying the economic,environmental,and technical values of energy storage.This forms a quantitative evaluation system for energy storage value.By comparing the calculated system values under different energy storage capacities,the marginal value evolution trend of energy storage is obtained.Meanwhile,considering factors such as the utilization rate of renewable energy,the change in energy storage value under different scenarios is analyzed.The results show that the value of long-duration energy storage is significantly affected by the energy storage capacity.Specifically,when the charge-discharge efficiency of longduration energy storage reaches 0.6 or above,the system value increases significantly.Additionally,appropriately reducing the cost of energy storage capacity also helps to improve its system value. 展开更多
关键词 Quantitative evaluation of value marginal benefit joint planning value evolution trend
下载PDF
Grain refinement mechanism of as-cast aluminum by hafnium 被引量:5
4
作者 Hong-ying LI De-wang LI +5 位作者 Zhi-xiang ZHU Bao-an CHEN Xin CHEN Chang-long YANG Hong-yu ZHANG Wei KANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3059-3069,共11页
The effect of Hf on the grain refinement of as-cast aluminum was investigated using optical microscopy, electron microscopy and X-ray diffraction. The result shows that the grain size of studied alloy decreases effect... The effect of Hf on the grain refinement of as-cast aluminum was investigated using optical microscopy, electron microscopy and X-ray diffraction. The result shows that the grain size of studied alloy decreases effectively with the addition of Hf,Hf can react with Al to form Al3Hf particles during the solidification, the primary Al3Hf particles are highly potent nucleants for Al and the nanoscale coherent Al3Hf particles can inhibit the grain growth by pinning effect. The grain refinement mechanism of studied alloys was verified by the solute theory and the crystallography study, and it can be divided into two distinct types: At low Hf contents, there are no primary Al3Hf phases to form, the acquired grain refinement is primarily attributed to the constitutional undercooling induced by the Hf solute. At medium and high Hf contents, both Hf solute and Al3Hf particles contribute to the refinement. 展开更多
关键词 grain refinement mechanism aluminum alloy CASTING HF Al3Hf
下载PDF
GA-iForest: An Efficient Isolated Forest Framework Based on Genetic Algorithm for Numerical Data Outlier Detection 被引量:4
5
作者 LI Kexin LI Jing +3 位作者 LIU Shuji LI Zhao BO Jue LIU Biqi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第6期1026-1038,共13页
With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorith... With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorithm is one of the more prominent numerical data outlier detection algorithms in recent years.In the process of constructing the isolation tree by the isolated forest algorithm,as the isolation tree is continuously generated,the difference of isolation trees will gradually decrease or even no difference,which will result in the waste of memory and reduced efficiency of outlier detection.And in the constructed isolation trees,some isolation trees cannot detect outlier.In this paper,an improved iForest-based method GA-iForest is proposed.This method optimizes the isolated forest by selecting some better isolation trees according to the detection accuracy and the difference of isolation trees,thereby reducing some duplicate,similar and poor detection isolation trees and improving the accuracy and stability of outlier detection.In the experiment,Ubuntu system and Spark platform are used to build the experiment environment.The outlier datasets provided by ODDS are used as test.According to indicators such as the accuracy,recall rate,ROC curves,AUC and execution time,the performance of the proposed method is evaluated.Experimental results show that the proposed method can not only improve the accuracy and stability of outlier detection,but also reduce the number of isolation trees by 20%-40%compared with the original iForest method. 展开更多
关键词 outlier detection isolation tree isolated forest genetic algorithm feature selection
下载PDF
Recent Progress on Thermal Energy Storage for Coal-Fired Power Plant
6
作者 WANG Wei ZHANG Jianyuan +8 位作者 GU Yi LUO Qing ZHOU Guiqing LI Ang LU Guozhong MA Tingshan ZHAO Yuanzhu CHANG Yiming XUE Zhaonan 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第6期2138-2150,共13页
With countries proposing the goal of carbon neutrality,the clean transformation of energy structure has become a hot and trendy issue internationally.Renewable energy generation will account for the main proportion,bu... With countries proposing the goal of carbon neutrality,the clean transformation of energy structure has become a hot and trendy issue internationally.Renewable energy generation will account for the main proportion,but it also leads to the problem of unstable electricity supply.At present,large-scale energy storage technology is not yet mature.Improving the flexibility of coal-fired power plants to suppress the instability of renewable energy generation is a feasible path.Thermal energy storage is a feasible technology to improve the flexibility of coal-fired power plants.This article provides a review of the research on the flexibility transformation of coal-fired power plants based on heat storage technology,mainly including medium to low-temperature heat storage based on hot water tanks and high-temperature heat storage based on molten salt.The current technical difficulties are summarized,and future development prospects are presented.The combination of the thermal energy storage system and coal-fired power generation system is the foundation,and the control of the inclined temperature layer and the selection and development of molten salt are key issues.The authors hope that the research in this article can provide a reference for the flexibility transformation research of coal-fired power plants,and promote the application of heat storage foundation in specific coal-fired power plant transformation projects. 展开更多
关键词 thermal energy storage coal-fired power station flexible regulation water tank heat storage mol saltheatstorage
原文传递
Research on practical power system stability analysis algorithm based on modified SVM 被引量:66
7
作者 Kaiyuan Hou Guanghui Shao +4 位作者 Haiming Wang Le Zheng Qiang Zhang Shuang Wu Wei Hu 《Protection and Control of Modern Power Systems》 2018年第1期129-135,共7页
Stable and safe operation of power grids is an important guarantee for economy development.Support Vector Machine(SVM)based stability analysis method is a significant method started in the last century.However,the SVM... Stable and safe operation of power grids is an important guarantee for economy development.Support Vector Machine(SVM)based stability analysis method is a significant method started in the last century.However,the SVM method has several drawbacks,e.g.low accuracy around the hyperplane and heavy computational burden when dealing with large amount of data.To tackle the above problems of the SVM model,the algorithm proposed in this paper is optimized from three aspects.Firstly,the gray area of the SVM model is judged by the probability output and the corresponding samples are processed.Therefore the clustering of the samples in the gray area is improved.The problem of low accuracy in the training of the SVM model in the gray area is improved,while the size of the sample is reduced and the efficiency is improved.Finally,by adjusting the model of the penalty factor in the SVM model after the clustering of the samples,the number of samples with unstable states being misjudged as stable is reduced.Test results on the IEEE 118-bus test system verify the proposed method. 展开更多
关键词 Security region analysis Support vector machine K-means clustering
原文传递
Dispatch Model for Integrated Heat and Power Systems Considering Internal Composition of CHP Plants 被引量:3
8
作者 Tuo Jiang Yong Min +3 位作者 Guiping Zhou Lei Chen Qun Chen Fei Xu 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第2期396-407,共12页
An integrated heat and power system(IHPS)is a promising approach for alleviating wind curtailment problems.In an IHPS,the combined heat and power(CHP)plant is the key component,which supplies both heat and electric lo... An integrated heat and power system(IHPS)is a promising approach for alleviating wind curtailment problems.In an IHPS,the combined heat and power(CHP)plant is the key component,which supplies both heat and electric loads,and couples the thermal system and power system.However,existing research commonly ignores or simplifies the internal composition of CHP plants,which could lead to some unavoidable errors.This paper focuses on the internal composition of CHP plants,and models the physical processes in different components and flexible resources in the CHP plant.Furthermore,a joint dispatch problem of an IHPS with the above CHP plant models is formulated,and an iterative algorithm is developed to handle the nonlinearity in this problem.Case studies are performed based on a real CHP plant in Northern China,and the results indicate that the synergistic effect of different energy resources in the CHP plant is realized by the joint dispatch model,which promotes wind power accommodation and reduces fossil fuel consumption. 展开更多
关键词 Combined heat and power(CHP)plant CHP unit economic dispatch Integrated heat and power system wind power integration
原文传递
Hierarchical Dispatch Method for Integrated Heat and Power Systems Based on a Feasible Region of Boundary Variables 被引量:2
9
作者 Tuo Jiang Yong Min +5 位作者 Weichun Ge Lei Chen Qun Chen Fei Xu Huanhuan Luo Guiping Zhou 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第3期543-553,共11页
Fully utilizing the flexibility provided by a district heating system(DHS)can promote wind power accommodation for an electric power system(EPS).However,for privacy or communication reasons,existing power and heat dis... Fully utilizing the flexibility provided by a district heating system(DHS)can promote wind power accommodation for an electric power system(EPS).However,for privacy or communication reasons,existing power and heat dispatch methods are not suitable for practical application.In this paper,a general math formulation of the hierarchical dispatch method is proposed to coordinate EPS and DHS operators based on the feasible region of boundary variables(FRBV),and a method based on the simplicial approximation approach is proposed to obtain a conservative FRBV approximation of a DHS.A simulation based on a real 41-node DHS is constructed to determine the factors that may impact the boundaries of the FRBV,and then the performance of the simplicial approximation approach is displayed by visualizing the approximation process for the FRBV,and finally three dispatch methods are compared to show the advantages of the proposed hierarchical dispatch method. 展开更多
关键词 District heating system feasible region hierarchical dispatch method integrated heat and power system simplicial approximation approach
原文传递
Effect of particle size on the thermal performance of NaNO3/SiC)2/C composite phase-change materials
10
作者 Liang Liu Liqiong Wang +2 位作者 Weichun Ge Yanfeng Ge Yun Huang 《Particuology》 SCIE EI CAS CSCD 2019年第3期169-175,共7页
Storage of thermal energy is a key technology for energy conservation and application of renewable energy sources. In this paper, the thermal performance of inorganic composite phase-change materials (PCMs;NaNO3/SiO2/... Storage of thermal energy is a key technology for energy conservation and application of renewable energy sources. In this paper, the thermal performance of inorganic composite phase-change materials (PCMs;NaNO3/SiO2/C) is studied under extreme thermal conditions and the effect of raw particle size is examined. We designed a thermal shock test platform with a diffusive combustion system and in-situ infrared thermal imaging. The influences of the heat flux magnitude and exposure time on the performance of the PCMs were examined under vertical thermal shock conditions. Leakage of molten salt in the composite PCMs was observed as the heat flux reached a threshold point. The morphology and thermal properties were characterized by ex-situ SEM, XRD, DSC, and BET. Raw particles with sizes in the range of 105-500 μm were used to synthesize the composite material and examine its role in thermal shock behavior. Our experiments showed that deterioration of the thermal storage density was slowed as the particle size was increased. This work provides useful guidance for improving the anti-thermal shock ability of future material designs. 展开更多
关键词 THERMAL STORAGE Phase CHANGE material PARTICLE SIZE THERMAL shock DECOMPOSITION temperature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部