Amorphous CaAs films are deposited on substrates of quartz glass and sificon by rf magnetron sputtering technique in different gas ambient. First, the amorphous structure of the prepared samples is identified by x-ray...Amorphous CaAs films are deposited on substrates of quartz glass and sificon by rf magnetron sputtering technique in different gas ambient. First, the amorphous structure of the prepared samples is identified by x-ray diffraction. Second, analysis by radial distribution function and pair correlation function method is established to characterize the microstructure of the samples. Then, the content and bond type of hydrogen are analysed using Fourier transform infrared absorption spectroscopy. It is found that the bonded hydrogen content increases with increasing partial pressure PH of H2. However, the hydrogen content saturates at PH 〉 1 × 10^-1 Pa. Hydrogen addition shills the optical absorption edge to higher energy, decreases the dark conductivity and improves the photo-sensitivity. The optical gap, dark conductivity and photo-sensitivity of the films are dependent on the bonded hydrogen content. These results demonstrate that hydrogen has obvious passivation effects on rf sputtered amorphous GaAs thin films.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 61356002.
文摘Amorphous CaAs films are deposited on substrates of quartz glass and sificon by rf magnetron sputtering technique in different gas ambient. First, the amorphous structure of the prepared samples is identified by x-ray diffraction. Second, analysis by radial distribution function and pair correlation function method is established to characterize the microstructure of the samples. Then, the content and bond type of hydrogen are analysed using Fourier transform infrared absorption spectroscopy. It is found that the bonded hydrogen content increases with increasing partial pressure PH of H2. However, the hydrogen content saturates at PH 〉 1 × 10^-1 Pa. Hydrogen addition shills the optical absorption edge to higher energy, decreases the dark conductivity and improves the photo-sensitivity. The optical gap, dark conductivity and photo-sensitivity of the films are dependent on the bonded hydrogen content. These results demonstrate that hydrogen has obvious passivation effects on rf sputtered amorphous GaAs thin films.