期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Wheat genomic study for genetic improvement of traits in China 被引量:13
1
作者 Jun Xiao Bao Liu +37 位作者 Yingyin Yao Zifeng Guo Haiyan Jia Lingrang Kong Aimin Zhang Wujun Ma Zhongfu Ni Shengbao Xu Fei Lu Yuannian Jiao Wuyun Yang Xuelei Lin Silong Sun Zefu Lu Lifeng Gao Guangyao Zhao Shuanghe Cao Qian Chen Kunpu Zhang Mengcheng Wang Meng Wang Zhaorong Hu Weilong Guo Guoqiang Li Xin Ma Junming Li Fangpu Han Xiangdong Fu Zhengqiang Ma Daowen Wang Xueyong Zhang Hong-Qing Ling Guangmin Xia Yiping Tong Zhiyong Liu Zhonghu He Jizeng Jia Kang Chong 《Science China(Life Sciences)》 SCIE CAS CSCD 2022年第9期1718-1775,共58页
Bread wheat(Triticum aestivum L.)is a major crop that feeds 40%of the world’s population.Over the past several decades,advances in genomics have led to tremendous achievements in understanding the origin and domestic... Bread wheat(Triticum aestivum L.)is a major crop that feeds 40%of the world’s population.Over the past several decades,advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat,and the genetic basis of agronomically important traits,which promote the breeding of elite varieties.In this review,we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield,end-use traits,flowering regulation,nutrient use efficiency,and biotic and abiotic stress responses,and various breeding strategies that contributed mainly by Chinese scientists.Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools,highthroughput phenotyping platforms,sequencing-based cloning strategies,high-efficiency genetic transformation systems,and speed-breeding facilities.These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process,ultimately contributing to more sustainable agriculture in China and throughout the world. 展开更多
关键词 WHEAT GENOMICS genetic improvement China
原文传递
Ectopic expression of VRT-A2 underlies the origin of Triticum polonicum and Triticum petropavlovskyi with long outer glumes and grains 被引量:4
2
作者 Jing Liu Zhaoyan Chen +19 位作者 Zhihui Wang Zhaoheng Zhang Xiaoming Xie Zihao Wang Lingling Chai Long Song Xuejiao Cheng Man Feng Xiaobo Wang Yanhong Liu Zhaorong Hu Jiewen Xing Zhenqi Su Huiru Peng Mingming Xin Yingyin Yao Weilong Guo Qixin Sun Jie Liu Zhongfu Ni 《Molecular Plant》 SCIE CAS CSCD 2021年第9期1472-1488,共17页
Polish wheat (Triticum polonicum) is a unique tetraploid wheat species characterized by an elongated outer glume. The genetic control of the long-glume trait by a single semi-dominant locus, P1 (from Polish wheat), wa... Polish wheat (Triticum polonicum) is a unique tetraploid wheat species characterized by an elongated outer glume. The genetic control of the long-glume trait by a single semi-dominant locus, P1 (from Polish wheat), was established more than 100 years ago, but the underlying causal gene and molecular nature remain elusive. Here, we report the isolation of VRT-A2, encoding an SVP-clade MADS-box transcription factor, as the P1 candidate gene. Genetic evidence suggests that in T. polonicum, a naturally occurring sequence rearrangement in the intron-1 region of VRT-A2 leads to ectopic expression of VRT-A2 in floral organs where the long-glume phenotype appears. Interestingly, we found that the intron-1 region is a key ON/OFF molecular switch for VRT-A2 expression, not only because it recruits transcriptional repressors, but also because it confers intron-mediated transcriptional enhancement. Genotypic analyses using wheat accessions indicated that the P1 locus is likely derived from a single natural mutation in tetraploid wheat, which was subsequently inherited by hexaploid T. petropavlovskyi. Taken together, our findings highlight the promoter-proximal intron variation as a molecular basis for phenotypic differentiation, and thus species formation in Triticum plants. 展开更多
关键词 long glume P1 species differentiation T.polonicum VRT-A2
原文传递
A natural variation in Ribonuclease H-like gene underlies Rht8 to confer“Green Revolution”trait in wheat 被引量:9
3
作者 Lingling Chai Mingming Xin +17 位作者 Chaoqun Dong Zhaoyan Chen Huijie Zhai Junhong Zhuang Xuejiao Cheng Naijiao Wang Jia Geng Xiaobo Wang Ruolin Bian Yingyin Yao Weilong Guo Zhaorong Hu Huiru Peng Guihua Bai Qixin Sun Zhenqi Su Jie Liu Zhongfu Ni 《Molecular Plant》 SCIE CAS CSCD 2022年第3期377-380,共4页
Dear Editor,Introduction of gibberellin(GA)-insensitive Reduced height(Rht)genes,Rht-B1b and Rht-D1b,has resulted in the“Green Revolution”in modern wheat cultivars(Triticum aestivum)that has skyrocketed wheat grain ... Dear Editor,Introduction of gibberellin(GA)-insensitive Reduced height(Rht)genes,Rht-B1b and Rht-D1b,has resulted in the“Green Revolution”in modern wheat cultivars(Triticum aestivum)that has skyrocketed wheat grain yields worldwide since the 1960s(Peng et al.,1999;Velde et al.,2021).However,Rht-B1b/D1b also reduce coleoptiles,which is undesired in dryland regions where deep planting is essential for seedling establishment(Rebetzke et al.,1999,Rebetzke et al.,2001;Ellis et al.,2004). 展开更多
关键词 AESTIVUM SEEDLING CULTIVAR
原文传递
Wheat male-sterile 2 reduces ROS levels to inhibit anther development by deactivating ROS modulator 1 被引量:1
4
作者 Jie Liu Chuan Xia +7 位作者 Huixue Dong Pan Liu Ruizhen Yang Lichao Zhang Xu Liu Jizeng Jia Xiuying Kong Jiaqiang Sun 《Molecular Plant》 SCIE CAS CSCD 2022年第9期1428-1439,共12页
Ms2 is an important dominant male-sterile gene in wheat,but the biochemical function of Ms2 and the mechanism by which it causes male sterility remain elusive.Here,we report the molecular basis underlying Ms2-induced ... Ms2 is an important dominant male-sterile gene in wheat,but the biochemical function of Ms2 and the mechanism by which it causes male sterility remain elusive.Here,we report the molecular basis underlying Ms2-induced male sterility in wheat.We found that activated Ms2 specifically reduces the reactive oxygen species(ROS)signals in anthers and thereby induces termination of wheat anther development at an early stage.Furthermore,our results indicate that Ms2 is localized in mitochondria,where it physically interacts with a wheat homolog of ROS modulator 1(TaRomo1).Romo1 positively regulates the ROS levels in humans but has never been studied in plants.We found that single amino acid substitutions in the Ms2 protein that rescue the ms2 male-sterile phenotype abolish the interaction between Ms2 and TaRomo1.Significantly,Ms2 promotes the transition of TaRomo1 proteins from active monomers to inactive oligomers.Taken together,our findings unravel the molecular basis of Ms2-induced male sterility and reveal a regulatory mechanism in which ROS act as essential signals guiding the anther development program in wheat. 展开更多
关键词 WHEAT Ms2 male sterility ROS Romo1
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部