Alfalfa (Medicago sativa) is difficult to ensile successfully because of the low content of moisture and water-soluble carbohydrates (WSC) in fresh alfalfa and the high buffering capacity in fresh alfalfa. Here, w...Alfalfa (Medicago sativa) is difficult to ensile successfully because of the low content of moisture and water-soluble carbohydrates (WSC) in fresh alfalfa and the high buffering capacity in fresh alfalfa. Here, we conducted a study to evaluate the effects of three lactic acid bacteria (LAB) inoculants (Lactobacillus case/, lactobacillus plantarum, and Pediococcus pentosaceus) on silage quality, in sitE/ruminal degradability, and in vitro fermentation of alfalfa silage. The first cut of alfalfa was wilted, chopped, and randomly divided into four groups: the control (CON) and control mixed with three separate LAB inoculants (106 cfu g-1). Simmental steers with a body weight of (452±18) kg and with installed rumen fistulas were prepared for in situ degradation and for in vitro gas production. LAB inoculants had a lower (P〈0.05) content of butyric acid than the CON group. Among them, the L. casei inoculated silage had a higher (P〈0.05) content of water-soluble carbohydrate (WSC) and a lower (P〈0.05) NH3-H content. The effective degradation (ED) of crude protein in LAB inoculation decreased (P〈0.05), while the ED of acid detergent fiber increased (P〈0.05) in situ fermentation. The alfalfa silage with LAB inoculants produced more carbon dioxide (P〈0.05). The NH3-H content of mixed incubation fluid in L. casei inoculated silage was lower (P〈0.05) compared with other groups. Therefore, this study showed that LAB inoculants could improve both ensiling quality and degradation. In particular, the L. casei inoculations exhibited better performance by limiting proteolysis during ensiling.展开更多
Myostatin, a member of the transforming growth factor beta(TGF-β) superfamily, is a dominant inhibitor that acts to limit skeletal muscle growth and development. In this study, we generated transgenic mice that exp...Myostatin, a member of the transforming growth factor beta(TGF-β) superfamily, is a dominant inhibitor that acts to limit skeletal muscle growth and development. In this study, we generated transgenic mice that express porcine myostatin containg mutations at its cleavage site(RSRR) to evaluate its effect on muscle mass. Results showed that the weight of four skeletal muscles including gastrocnemius, rectus femoris, tibialis anterior, and pectoralis increased by 17.83 and 28.39%, 21.76 and 28.70%, 34.31 and 41.62%, 53.21 and 27.54% in transgenic male and female mice, respectively, compared to their corresponding non-transgenic control mice. Measurement of muscle fiber size and number indicated that the mean myofiber size increased by 50.73 and 61.30% in transgenic male and female mice respectively compared to the non-transgenic controls. However, there was no difference in the number of myofiber between transgenic and non-transgenic male mice. These results clearly demonstrated that the increase in skeletal muscle mass in transgenic mice is caused by hypertrophy instead of hyperplasia.展开更多
Type A spermatogonial stem cells are the only immortal diploid cells in the postnatal animal that undergo self-renewal through the lifetime of an animal and transmit genes to subsequent generations. In this paper, the...Type A spermatogonial stem cells are the only immortal diploid cells in the postnatal animal that undergo self-renewal through the lifetime of an animal and transmit genes to subsequent generations. In this paper, the generation and characterization of double-transgenic mice co-expressing the Escherichia coli appA gene and human MxA gene generated via the in vivo transfection of type A spermatogonial cells were reported for the ifrst time. The dicistronic expression vector pcDNA-appA-MxA(AMP) and ExGen500 transfection reagent were injected into the testicular tissue of 7-d-old male ICR mice. The mice that underwent testis-mediated gene transfer were mated with wild-type female mice, and the integration and expression of the foreign genes in the offspring were evaluated. Transgenic mice that co-expressed appA and MxA showed a gene integration rate of 8.89%(16/180). The transgenic mice were environmentally friendly, as the amount of phosphorous remaining in the manure was reduced by as much as 11.1%by the appA gene (P〈0.05);these animals also exhibited a strong anti-viral phenotype.展开更多
基金funded by the projects of the National Public Welfare Industry (Agriculture) R&D Program,China (201303061)the China Agricultural Research System (CARS-39)
文摘Alfalfa (Medicago sativa) is difficult to ensile successfully because of the low content of moisture and water-soluble carbohydrates (WSC) in fresh alfalfa and the high buffering capacity in fresh alfalfa. Here, we conducted a study to evaluate the effects of three lactic acid bacteria (LAB) inoculants (Lactobacillus case/, lactobacillus plantarum, and Pediococcus pentosaceus) on silage quality, in sitE/ruminal degradability, and in vitro fermentation of alfalfa silage. The first cut of alfalfa was wilted, chopped, and randomly divided into four groups: the control (CON) and control mixed with three separate LAB inoculants (106 cfu g-1). Simmental steers with a body weight of (452±18) kg and with installed rumen fistulas were prepared for in situ degradation and for in vitro gas production. LAB inoculants had a lower (P〈0.05) content of butyric acid than the CON group. Among them, the L. casei inoculated silage had a higher (P〈0.05) content of water-soluble carbohydrate (WSC) and a lower (P〈0.05) NH3-H content. The effective degradation (ED) of crude protein in LAB inoculation decreased (P〈0.05), while the ED of acid detergent fiber increased (P〈0.05) in situ fermentation. The alfalfa silage with LAB inoculants produced more carbon dioxide (P〈0.05). The NH3-H content of mixed incubation fluid in L. casei inoculated silage was lower (P〈0.05) compared with other groups. Therefore, this study showed that LAB inoculants could improve both ensiling quality and degradation. In particular, the L. casei inoculations exhibited better performance by limiting proteolysis during ensiling.
基金supported by the National Natural Science Foundation of China(30901022)the Agricultural Science and Technology Innovation Program,China(ASTIPIAS05)the National Basic Research Program of China(2015CB943100)
文摘Myostatin, a member of the transforming growth factor beta(TGF-β) superfamily, is a dominant inhibitor that acts to limit skeletal muscle growth and development. In this study, we generated transgenic mice that express porcine myostatin containg mutations at its cleavage site(RSRR) to evaluate its effect on muscle mass. Results showed that the weight of four skeletal muscles including gastrocnemius, rectus femoris, tibialis anterior, and pectoralis increased by 17.83 and 28.39%, 21.76 and 28.70%, 34.31 and 41.62%, 53.21 and 27.54% in transgenic male and female mice, respectively, compared to their corresponding non-transgenic control mice. Measurement of muscle fiber size and number indicated that the mean myofiber size increased by 50.73 and 61.30% in transgenic male and female mice respectively compared to the non-transgenic controls. However, there was no difference in the number of myofiber between transgenic and non-transgenic male mice. These results clearly demonstrated that the increase in skeletal muscle mass in transgenic mice is caused by hypertrophy instead of hyperplasia.
基金supported by the National Transgenic Breeding Project of China (2011ZX08010-003)the National Natural Science Foundation of China (31272405, 31101683)
文摘Type A spermatogonial stem cells are the only immortal diploid cells in the postnatal animal that undergo self-renewal through the lifetime of an animal and transmit genes to subsequent generations. In this paper, the generation and characterization of double-transgenic mice co-expressing the Escherichia coli appA gene and human MxA gene generated via the in vivo transfection of type A spermatogonial cells were reported for the ifrst time. The dicistronic expression vector pcDNA-appA-MxA(AMP) and ExGen500 transfection reagent were injected into the testicular tissue of 7-d-old male ICR mice. The mice that underwent testis-mediated gene transfer were mated with wild-type female mice, and the integration and expression of the foreign genes in the offspring were evaluated. Transgenic mice that co-expressed appA and MxA showed a gene integration rate of 8.89%(16/180). The transgenic mice were environmentally friendly, as the amount of phosphorous remaining in the manure was reduced by as much as 11.1%by the appA gene (P〈0.05);these animals also exhibited a strong anti-viral phenotype.