期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering 被引量:5
1
作者 Rui Yu Hualei Zhang Baolin Guo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第1期1-46,共46页
Conductive biomaterials based on conductive polymers,carbon nanomaterials,or conductive inorganic nanomaterials demonstrate great potential in wound healing and skin tissue engineering,owing to the similar conductivit... Conductive biomaterials based on conductive polymers,carbon nanomaterials,or conductive inorganic nanomaterials demonstrate great potential in wound healing and skin tissue engineering,owing to the similar conductivity to human skin,good antioxidant and antibacterial activities,electrically controlled drug delivery,and photothermal effect.However,a review highlights the design and application of conductive biomaterials for wound healing and skin tissue engineering is lacking.In this review,the design and fabrication methods of conductive biomaterials with various structural forms including film,nanofiber,membrane,hydrogel,sponge,foam,and acellular dermal matrix for applications in wound healing and skin tissue engineering and the corresponding mechanism in promoting the healing process were summarized.The approaches that conductive biomaterials realize their great value in healing wounds via three main strategies(electrotherapy,wound dressing,and wound assessment)were reviewed.The application of conductive biomaterials as wound dressing when facing different wounds including acute wound and chronic wound(infected wound and diabetic wound)and for wound monitoring is discussed in detail.The challenges and perspectives in designing and developing multifunctional conductive biomaterials are proposed as well. 展开更多
关键词 Conducting polymers Inorganic nanomaterials BIOMATERIALS ELECTROTHERAPY Wound monitoring
下载PDF
Bioinspired Injectable Self-Healing Hydrogel Sealant with Fault-Tolerant and Repeated Thermo-Responsive Adhesion for Sutureless Post-Wound-Closure and Wound Healing 被引量:2
2
作者 Yuqing Liang Huiru Xu +2 位作者 Zhenlong Li Aodi Zhangji Baolin Guo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第11期256-274,共19页
Hydrogels with multifunctionalities,including sufficient bonding strength,injectability and self-healing capacity,responsive-adhesive ability,fault-tolerant and repeated tissue adhesion,are urgently demanded for invas... Hydrogels with multifunctionalities,including sufficient bonding strength,injectability and self-healing capacity,responsive-adhesive ability,fault-tolerant and repeated tissue adhesion,are urgently demanded for invasive wound closure and wound healing.Motivated by the adhesive mechanism of mussel and brown algae,bioinspired dynamic bonds cross-linked multifunctional hydrogel adhesive is designed based on sodium alginate(SA),gelatin(GT)and protocatechualdehyde,with ferric ions added,for sutureless post-wound-closure.The dynamic hydrogel cross-linked through Schiff base bond,catechol-Fe coordinate bond and the strong interaction between GT with temperature-dependent phase transition and SA,endows the resulting hydrogel with sufficient mechanical and adhesive strength for efficient wound closure,injectability and self-healing capacity,and repeated closure of reopened wounds.Moreover,the temperature-dependent adhesive properties endowed mispositioning hydrogel to be removed/repositioned,which is conducive for the fault-tolerant adhesion of the hydrogel adhesives during surgery.Besides,the hydrogels present good biocompatibility,near-infrared-assisted photothermal antibacterial activity,antioxidation and repeated thermo-responsive reversible adhesion and good hemostatic effect.The in vivo incision closure evaluation demonstrated their capability to promote the post-wound-closure and wound healing of the incisions,indicating that the developed reversible adhesive hydrogel dressing could serve as versatile tissue sealant. 展开更多
关键词 Bioinspired injectable hydrogel Tissue sealant Temperature-dependent adhesion Reversible adhesion Wound healing
下载PDF
Antibacterial biomaterials for skin wound dressing 被引量:4
3
作者 Yuqing Liang Yongping Liang +1 位作者 Hualei Zhang Baolin Guo 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2022年第3期353-384,共32页
Bacterial infection and the ever-increasing bacterial resistance have imposed severe threat to human health.And bacterial contamination could significantly menace the wound healing process.Considering the sophisticate... Bacterial infection and the ever-increasing bacterial resistance have imposed severe threat to human health.And bacterial contamination could significantly menace the wound healing process.Considering the sophisticated wound healing process,novel strategies for skin tissue engineering are focused on the integration of bioactive ingredients,antibacterial agents included,into biomaterials with different morphologies to improve cell behaviors and promote wound healing.However,a comprehensive review on antibacterial wound dressing to enhance wound healing has not been reported.In this review,various antibacterial biomaterials as wound dressings will be discussed.Different kinds of antibacterial agents,including antibiotics,nanoparticles(metal and metallic oxides,lightinduced antibacterial agents),cationic organic agents,and others,and their recent advances are summarized.Biomaterial selection and fabrication of biomaterials with different structures and forms,including films,hydrogel,electrospun nanofibers,sponge,foam and three-dimension(3D)printed scaffold for skin regeneration,are elaborated discussed.Current challenges and the future perspectives are presented in thismultidisciplinary field.We envision that this review will provide a general insight to the elegant design and further refinement of wound dressing. 展开更多
关键词 Antibacterial activity Wound healing Wound dressing Skin tissue engineering BIOMATERIALS
下载PDF
Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission 被引量:2
4
作者 Yue Zhang Meng Li +14 位作者 Yunchuan Wang Fei Han Kuo Shen Liang Luo Yan Li Yanhui Jia Jian Zhang Weixia Cai Kejia Wang Ming Zhao Jing Wang Xiaowen Gao Chenyang Tian Baolin Guo Dahai Hu 《Bioactive Materials》 SCIE CSCD 2023年第8期323-336,共14页
Chronic diabetic wounds remain a globally recognized clinical challenge.They occur due to high concentrations of reactive oxygen species and vascular function disorders.A promising strategy for diabetic wound healing ... Chronic diabetic wounds remain a globally recognized clinical challenge.They occur due to high concentrations of reactive oxygen species and vascular function disorders.A promising strategy for diabetic wound healing is the delivery of exosomes,comprising bioactive dressings.Metformin activates the vascular endothelial growth factor pathway,thereby improving angiogenesis in hyperglycemic states.However,multifunctional hydrogels loaded with drugs and bioactive substances synergistically promote wound repair has been rarely reported,and the mechanism of their combinatorial effect of exosome and metformin in wound healing remains unclear.Here,we engineered dual-loaded hydrogels possessing tissue adhesive,antioxidant,self-healing and electrical conductivity properties,wherein 4-armed SH-PEG cross-links with Ag^(+),which minimizes damage to the loaded goods and investigated their mechanism of promotion effect for wound repair.Multiwalled carbon nanotubes exhibiting good conductivity were also incorporated into the hydrogels to generate hydrogen bonds with the thiol group,creating a stable three-dimensional structure for exosome and metformin loading.The diabetic wound model of the present study suggests that the PEG/Ag/CNT-M+E hydrogel promotes wound healing by triggering cell proliferation and angiogenesis and relieving peritraumatic inflammation and vascular injury.The mechanism of the dual-loaded hydrogel involves reducing the level of reactive oxygen species by interfering with mitochondrial fission,thereby protecting F-actin homeostasis and alleviating microvascular dysfunction.Hence,we propose a drug-bioactive substance combination therapy and provide a potential mechanism for developing vascular function-associated strategies for treating chronic diabetic wounds. 展开更多
关键词 Dual-loaded hydrogels Adipose-derived mesenchymal stem cell exosomes METFORMIN Angiogenesis Mitochondrial fission Chronic diabetic wound Wound healing
原文传递
Porous photothermal antibacterial antioxidant dual–crosslinked cryogel based on hyaluronic acid/polydopamine for non-compressible hemostasis and infectious wound repair
5
作者 Chunbo Wang Yuqing Liang +2 位作者 Ying Huang Meng Li Baolin Guo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第26期207-219,共13页
Cryogel dressings with good absorption ability and photothermal antibacterial properties for preventing wound infections and treating infected wounds have attracted widespread attention.In this work,a series of cryoge... Cryogel dressings with good absorption ability and photothermal antibacterial properties for preventing wound infections and treating infected wounds have attracted widespread attention.In this work,a series of cryogels with macroporous structure,antioxidant and photothermal properties were prepared based on adipic dihydrazide modified hyaluronic acid(HA-ADH),and dopamine(DA).The antioxidant properties,hemostatic properties,near infrared(NIR)assisted photothermal antibacterial ability provided by polydopamine,recyclable compression mechanical properties,and cytocompatibility were tested.The results demonstrated that the HA-ADH/DA cryogels have stable mechanical properties,great antibacterial properties against E.coli(EC)and methicillin-resistant S.aureus(MRSA).The high swelling ratio due to the high water retention of HA equipped the cryogels with the capability of absorbing exuded blood and excessive tissue fluid in the infected full-thickness skin defect model of mouse.The cryogels demonstrated good cytocompatibility and antioxidant performance through cell tests and 1,1-diphenyl-2-methylbenzohydrazino(DPPH)scavenging efficiency test.The cryogels showed enhanced blood-clotting index(BCI)and better hemostatic ability in the mouse liver trauma model and the rat deep noncompressible liver defect model compared with gauze and gelatin sponge.Furthermore,compared with commercial TegadermTMdressing in vivo,the HA-ADH/DA cryogels could greatly promote infected skin wound healing in a full-thickness infected skin defect wound model.In summary,the macroporous HAADH/DA cryogels with good antioxidant,high swelling ratio,photothermal antibacterial property,and biocompatibility are a promising hemostatic material and wound healing dressing. 展开更多
关键词 Dopamine-hyaluronic acid-based cryogels Antioxidant Photothermal antibacterial Wound healing HEMOSTASIS
原文传递
SnSe+Ag_2Se composite engineering with ball milling for enhanced thermoelectric performance 被引量:3
6
作者 Dan Feng Yue-Xing Chen +2 位作者 Liang-Wei Fu Ju Li Jia-Qing He 《Rare Metals》 SCIE EI CAS CSCD 2018年第4期333-342,共10页
Earth-abundant IV-VI semiconductor SnSe is regarded as a promising thermoelectric material due to its intrinsic low thermal conductivity. In this report, the highly textured SnSe/Ag2Se composites were first designed b... Earth-abundant IV-VI semiconductor SnSe is regarded as a promising thermoelectric material due to its intrinsic low thermal conductivity. In this report, the highly textured SnSe/Ag2Se composites were first designed by solid solution method followed by spark plasma sintering (SPS) and their thermoelectric properties in two directions were investigated, and then, the performance of composites was further optimized with an additional ball milling. The coexistence of SnSe and Ag2Se phases is clearly confirmed by energy-dispersive X-ray spectroscopy (EDX) in transmission electron microscopy (TEM). After ball milling, the size of SnSe grains as well as the incorporated Ag2Se particles reduces effectively, which synergistically optimizes the electrical and thermal transport properties at high temperature range. As a result, a maximum ZT of -0.74 at 773 K for SnSe + 1.0%AgzSe in the direction vertical to the pressing direction is achieved. Composite engineering with additional ball milling is thus proved to be an efficient way to improve the thermoelectric properties of SnSe, and this strategy could be applicable to other thermoelectric systems. 展开更多
关键词 THERMOELECTRICS SnSe Compositeengineering Ball milling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部