期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Prevalence of Opportunistic Pathogens and Diversity of Microbial Communities in the Water System of a Pulmonary Hospital 被引量:3
1
作者 TANG Wei MAO Yu +5 位作者 LI Qiu Yan MENG Die CHEN Ling WANG Hong ZHU Ren ZHANG Wei Xian 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2020年第4期248-259,共12页
Objective Our objective was to investigate the occurrence of opportunistic pathogens and characterize the bacterial community structures in the water system of a pulmonary hospital.Methods The water samples were colle... Objective Our objective was to investigate the occurrence of opportunistic pathogens and characterize the bacterial community structures in the water system of a pulmonary hospital.Methods The water samples were collected from automatic and manual faucets in the consulting room,treatment room,dressing room,respiratory ward,and other non-medical rooms in three buildings of the hospital.Quantitative polymerase chain reaction was used to quantify the load of several waterborne opportunistic pathogens and related microorganisms,including Legionella spp.,Mycobacterium spp.,and M.avium.Illumina sequencing targeting 16 S r RNA genes was performed to profile bacterial communities.Results The occurrence rates of Legionella spp.,Mycobacterium spp.,and M.avium were 100%,100%,and 76%,respectively in all samples.Higher occurrence rates of M.avium were observed in the outpatient service building(building 1,91.7%)and respiration department and wards(building 2,80%)than in the office building(building 3),where no M.avium was found.M.avium were more abundant in automatic faucets(average 2.21×10~4 gene copies/L)than in manual faucets(average 1.03×10~4 gene copies/m L)(P<0.01).Proteobacteria,Actinobacteria,Bacteroidetes,Cyanobacteria,Firmicutes,and Acidobacteria were the dominant bacterial phyla.Disinfectant residuals,nitrate,and temperature were found to be the key environmental factors driving microbial community structure shifts in water systems.Conclusion This study revealed a high level of colonization of water faucets by opportunistic pathogens and provided insight into the characteristics of microbial communities in a hospital water system and approaches to reduce risks of microbial contamination. 展开更多
关键词 Opportunistic pathogen Microbial community Hospital water system Mycobacterium avium
下载PDF
Characteristics of microbial community involved in early biofilms formation under the influence of wastewater treatment plant effluent 被引量:6
2
作者 Yuke Peng Jie Li +2 位作者 Junling Lu Lin Xiao Liuyan Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第4期113-124,共12页
Effluents from wastewater treatment plants(WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been wel... Effluents from wastewater treatment plants(WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been well characterized, little is known about the characteristics and interaction of bacteria, archaea and eukaryotes in the early colonization, especially under the influence of WWTP effluent. The aim of this study was to characterize the important bacterial, archaeal and eukaryotic species in the early stage of biofilm formation downstream of the WWTP outlet. Water and biofilm samples were collected 24 and 48 hr after the deposition of bio-cords in the stream. Illumina Miseq sequencing of the 16 S and 18 S rDNA showed that, among the three domains, the bacterial biofilm community had the largest alpha and beta diversity. The early bacterial colonizers appeared to be "biofilm-specific", with only a few dominant operational taxonomic units(OTUs) shared between the biofilm and the ambient water environment. Alpha-proteobacteria and Ciliophora tended to dominate the bacterial and eukaryotic communities, respectively, of the early biofilm already at 24 hr, whereas archaea played only a minor role during the early stage of colonization. The network analysis showed that the three domains of microbial community connected highly during the early colonization and it might be a characteristic of the microbial communities in the biofilm formation process where co-occurrence relationships could drive coexistence and diversity maintenance within the microbial communities. 展开更多
关键词 Wastewater treatment plant effluent Early colonization Archaea Microbial eukaryotes Network analysis
原文传递
Microbes team with nanoscale zero-valent iron: A robust route for degradation of recalcitrant pollutants 被引量:1
3
作者 Nuo Liu Jing Liu +2 位作者 Hong Wang Shaolin Li Wei-xian Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第8期140-146,共7页
Integrating nanoscale zero-valent iron(nZVI) with biological treatment processes holds the promise of inheriting significant advantages from both environmental nano-and biotechnologies. nZVI and microbes can perform i... Integrating nanoscale zero-valent iron(nZVI) with biological treatment processes holds the promise of inheriting significant advantages from both environmental nano-and biotechnologies. nZVI and microbes can perform in coalition in direct contact and act simultaneously, or be maintained in separate reactors and operated sequentially. Both modes can generate enhanced performance for wastewater treatment and environmental remediation. nZVI scavenges and eliminates toxic metals, and enhances biodegradability of some recalcitrant contaminants while bioprocesses serve to mineralize organic compounds and further remove impurities from wastewater. This has been demonstrated in a number of recent works that nZVI can substantially augment the performance of conventional biological treatment for wastewaters from textile and nonferrous metal industries. Our recent laboratory and field tests show that COD of the industrial effluents can be reduced to a record-low of 50 ppm. Recent literature on the theory and applications of the nZVI-bio system is highlighted in this mini review. 展开更多
关键词 Environmental microbiology Nanoscale zero-valent iron(nZVI) REMEDIATION Wastewater nZVI-bio system
原文传递
Nanoencapsulation of arsenate with nanoscale zero-valent iron(nZVI):A 3D perspective 被引量:8
4
作者 Airong Liu Wei Wang +2 位作者 Jing Liu Rongbing Fu Wei-xian Zhang 《Science Bulletin》 SCIE EI CAS CSCD 2018年第24期1641-1648,共8页
The principal forces driving the efficient enrichment and encapsulation of arsenic(As) into nanoscale zero-valent iron(nZVI) are the disordered arrangement of the atoms and the gradient chemical potentials within the ... The principal forces driving the efficient enrichment and encapsulation of arsenic(As) into nanoscale zero-valent iron(nZVI) are the disordered arrangement of the atoms and the gradient chemical potentials within the core-shell interface. The chemical compositions and the fine structure of nZVI are characterized with a combination of spherical aberration corrected scanning transmission electron microscopy(Cs-STEM), X-ray energy-dispersive spectroscopy(XEDS), electron energy loss spectroscopy(EELS), and high-resolution X-ray photoelectron spectroscopy(HR-XPS). Atomically resolved EELS at the oxygen K-edge unfolds that the Fe species in nZVI are well stratified from Fe(Ⅲ) oxides in the outermost periphery to a mixed Fe(Ⅲ)/Fe(Ⅱ) interlayer, then Fe(Ⅱ) oxide and the pure Fe(0) phase. Reactions between As(Ⅴ)and nZVI suggest that a well-structured local redox gradient exists within the shell layer, which serves as a thermodynamically favorable conduit for electron transfer from the iron core to the surface-bound As(Ⅴ). HR-XPS with ion sputtering shows that arsenic species shift from As(Ⅴ), As(Ⅲ)/As(Ⅴ) to As(Ⅴ)/As(Ⅲ)/As(0) from the iron oxide shell–water interface to the Fe(0) core. Results reinforce previous work on the efficacy of nZVI for removing and remediating arsenic while the analytical TEM methods are also applicable to the study of environmental interfaces and surface chemistry. 展开更多
关键词 ARSENATE Nanoscale zero-valent iron Spherical aberration corrected scanning transmission ELECTRON microscopy X-RAY energy-dispersive SPECTROSCOPY ELECTRON ENERGY-LOSS SPECTROSCOPY X-RAY photoelectron SPECTROSCOPY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部