期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Continuous Fabrication of Ti_(3)C_(2)T_x MXene-Based Braided Coaxial Zinc-Ion Hybrid Supercapacitors with Improved Performance 被引量:4
1
作者 Bao Shi La Li +3 位作者 Aibing Chen Tien-Chien Jen Xinying Liu Guozhen Shen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第2期206-215,共10页
Zinc-ion hybrid fiber supercapacitors(FSCs)are promising energy storages for wearable electronics owing to their high energy density,good flexibility,and weavability.However,it is still a critical challenge to optimiz... Zinc-ion hybrid fiber supercapacitors(FSCs)are promising energy storages for wearable electronics owing to their high energy density,good flexibility,and weavability.However,it is still a critical challenge to optimize the structure of the designed FSC to improve energy density and realize the continuous fabrication of super-long FSCs.Herein,we propose a braided coaxial zinc-ion hybrid FSC with several meters of Ti_(3)C_(2)T_x MXene cathode as core electrodes,and shell zinc fiber anode was braided on the surface of the Ti_(3)C_(2)T_x MXene fibers across the solid electrolytes.According to the simulated results using ANSYS Maxwell software,the braided structures revealed a higher capacitance compared to the spring-like structures.The resulting FSCs exhibited a high areal capacitance of 214 mF cm^(-2),the energy density of 42.8μWh cm^(-2)at 5 mV s^(-1),and excellent cycling stability with 83.58%capacity retention after 5000 cycles.The coaxial FSC was tied several kinds of knots,proving a shape-controllable fiber energy storage.Furthermore,the knitted FSC showed superior stability and weavability,which can be woven into watch belts or embedded into textiles to power smart watches and LED arrays for a few days. 展开更多
关键词 Ti_(3)C_(2)T_x MXene Fiber supercapacitor Coaxial structure Zinc-ion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部