Diamond impregnated Cu-Fe-Co based saw-blade segments are directly processed by vacuum and pressure-assisted sintering at different temperature,with the purpose of reducing the cobalt content in diamond tools.Copper a...Diamond impregnated Cu-Fe-Co based saw-blade segments are directly processed by vacuum and pressure-assisted sintering at different temperature,with the purpose of reducing the cobalt content in diamond tools.Copper and iron are used as the bonding elements and co-balt-chrome pre-alloyed powder is used as the hardening phase.Effects of sintering temperature on microstructures and mechanical properties of the sintered matrix and diamond graphitization were investigated by X-ray diffraction analysis,electron probe micro-analyzer,universal testing machine,digital Rockwell hardness tester and Raman scattering analyzer.Results showed that microstructures of the sintered matrix were refined and porosities in the sintered matrix were closed to a more spherical-like shape with the increase of the sintering temperature.Densification,hardness and tensile strength of the matrix sintered at 820 ℃ were 12.75%,2.72% and 156.38% higher than that of the matrix sintered at 740 ℃,respectively.Diamond graphitization was not occurred at 820 ℃.The hardness and the tensile strength rose 32.8% and 13.5%,respectively,after 7.5 h ageing treatment.The matrix densification ascent and the dispersed distribution of Co-Cr pre-alloyed powders contributed a hardness improvement and a tensile strength improvement to the Cu-Fe based matrix.展开更多
基金financially supported by Gansu Key Technology Project (No.090JKCA050)Gansu Outstanding Youth Foundation (No.201105)
文摘Diamond impregnated Cu-Fe-Co based saw-blade segments are directly processed by vacuum and pressure-assisted sintering at different temperature,with the purpose of reducing the cobalt content in diamond tools.Copper and iron are used as the bonding elements and co-balt-chrome pre-alloyed powder is used as the hardening phase.Effects of sintering temperature on microstructures and mechanical properties of the sintered matrix and diamond graphitization were investigated by X-ray diffraction analysis,electron probe micro-analyzer,universal testing machine,digital Rockwell hardness tester and Raman scattering analyzer.Results showed that microstructures of the sintered matrix were refined and porosities in the sintered matrix were closed to a more spherical-like shape with the increase of the sintering temperature.Densification,hardness and tensile strength of the matrix sintered at 820 ℃ were 12.75%,2.72% and 156.38% higher than that of the matrix sintered at 740 ℃,respectively.Diamond graphitization was not occurred at 820 ℃.The hardness and the tensile strength rose 32.8% and 13.5%,respectively,after 7.5 h ageing treatment.The matrix densification ascent and the dispersed distribution of Co-Cr pre-alloyed powders contributed a hardness improvement and a tensile strength improvement to the Cu-Fe based matrix.