The crystal structures of Streptomyces diastaticus No. 7 strain M1033 xylose isomerase (SDXyI) have been analysed and refined at 0.19nm. The crystal space group is I222, with unit cell dimensions of a=9.884 ran, b=9.3...The crystal structures of Streptomyces diastaticus No. 7 strain M1033 xylose isomerase (SDXyI) have been analysed and refined at 0.19nm. The crystal space group is I222, with unit cell dimensions of a=9.884 ran, b=9.393nm and c=8.798nm. Based on the coordinates of the Streptomyces rubiginosus xylose isomerase (SRXyI), the initial model of SDXyl was built up by the dose packing analysing and R-factor searching and refined by PROLSQ to a final R-factor of 0.177 with the rms deviations of bond lengths and bond angles of 0.001 9nm and 2.1°, respectively. No significant global conformation change existed between SRXyI and SDXyI except the local conformation in the active site.展开更多
基金Project supported by the National 863 Protein Engineering Program,the fund of President of the Chinese Academy Sciences and the grant of State Key Laboratory of Biomacromolecules.
文摘The crystal structures of Streptomyces diastaticus No. 7 strain M1033 xylose isomerase (SDXyI) have been analysed and refined at 0.19nm. The crystal space group is I222, with unit cell dimensions of a=9.884 ran, b=9.393nm and c=8.798nm. Based on the coordinates of the Streptomyces rubiginosus xylose isomerase (SRXyI), the initial model of SDXyl was built up by the dose packing analysing and R-factor searching and refined by PROLSQ to a final R-factor of 0.177 with the rms deviations of bond lengths and bond angles of 0.001 9nm and 2.1°, respectively. No significant global conformation change existed between SRXyI and SDXyI except the local conformation in the active site.