Silica hollow spheres(SHSs) have attracted great attention because of their low toxicity, low density, large surface area, high chemical and thermal stability, and surface permeability. They can be widely applied in...Silica hollow spheres(SHSs) have attracted great attention because of their low toxicity, low density, large surface area, high chemical and thermal stability, and surface permeability. They can be widely applied in storage^[l], catalysis^[2], drug deli- very^[3,4], low-dielectric-constant materials^[5], low-refractive materials^[6-8], and so on. Up to now, there have been various methods to produce SHSs. Inorganic^[9] or organic particles^[10], such as polystyrene or calcium carbonate, were used as hard templates to create hollow cavities, However, the multistep synthetic process and the lack of structural robustness of the shells upon template removal process weaken their applica- tion. Soft templates, including oil-in-water emulsions^[11,12], vesicles^[13], micelle^[14,15] and gas bubbles^[16], are applied widely.展开更多
The unique mathematical perspectives and principal concepts of topology have not only promoted the development of other branches of mathematics but have also deeply influenced other subjects,particularly physics and c...The unique mathematical perspectives and principal concepts of topology have not only promoted the development of other branches of mathematics but have also deeply influenced other subjects,particularly physics and chemistry.This minireview aims to elucidate the substantial influence of topology on chemistry by critically examining both the contributions of topology to current chemical science and its potential future impacts.We will discuss the topology of molecular structures and assemblies across various scales—from small molecules and mechanically interlocked molecules to polymers,biomacromolecules,and supramolecular networks.This discussion will include an exploration of cutting-edge techniques for characterizing topological features,underscoring the role of topology as a novel paradigm for the design and synthesis of new molecular assemblies.Furthermore,a critical analysis of topology’s role in the development of functional materials—such as photonic materials,polymers,biomacromolecules,and chiral materials—will demonstrate its emerging significance as a crucial parameter in unveiling novel properties and functionalities.Given topology’s formidable potential,it is anticipated to be used increasingly to address pivotal challenges within chemistry and adjacent disciplines.展开更多
Chirality is an indispensable integral of biological system.As an important part of organisms,chiral organic structure of bone has been extensively investigated.However,the chirality of bone minerals is unclear and no...Chirality is an indispensable integral of biological system.As an important part of organisms,chiral organic structure of bone has been extensively investigated.However,the chirality of bone minerals is unclear and not fully determined.Here,we report nine levels of fractal-like chirality of bone minerals by combining electron microscopic and spectrometric characterizations.The primary helically twisted acicular apatite crystals inside collagen fibrils and between fibrils merge laterally to form secondary helical subplatelets.The chiral arrangement of several subplatelets forms tertiary spiral mineral platelets.Further coherent stepwise stacking of mineral platelets with collagen fibrils leads to quaternary to ninth levels,which reconciled the previous conflicting models.The optical activities in the UV-visible,infrared and terahertz regions demonstrated chirality from atomic to macroscopic scales based on circularly selective absorption and Bragg resonance at different levels of chirality.Our findings provide new insight into the structural integrity of bone,osteology,forensic medicine and archaeology and inspire the design of novel biomaterials.展开更多
Chiral mesoporous silica ribbons and rods with inversed handedness have been synthesized with the same enantio pure N-acylaminoacidat temperatures of 0℃and 20℃ respectively. With involving Cu^(2+)and meso-tetra(4-su...Chiral mesoporous silica ribbons and rods with inversed handedness have been synthesized with the same enantio pure N-acylaminoacidat temperatures of 0℃and 20℃ respectively. With involving Cu^(2+)and meso-tetra(4-sulfonatophenyl)porphyrin(TPPS) as probes, ribbons and rods revealed opposite signals in diffuse-reflectance circular dichroism(DRCD) spectra, indicating the existence of inversed supramolecular chiral imprintings through helical stacking of amphiphiles. The structural evolution was systematically studied by the freeze-dried products sampled at different time after the addition of silica precursors. The H-bonding-depended molecular orientation probably controls the chiral sense upon forming chiral molecular stacking, which would be the origin of such handedness inversion展开更多
基金Supported by the National Natural Science Foundation of China(No.20890121)the National Basic Research Program of China(No.2009CB930403)
文摘Silica hollow spheres(SHSs) have attracted great attention because of their low toxicity, low density, large surface area, high chemical and thermal stability, and surface permeability. They can be widely applied in storage^[l], catalysis^[2], drug deli- very^[3,4], low-dielectric-constant materials^[5], low-refractive materials^[6-8], and so on. Up to now, there have been various methods to produce SHSs. Inorganic^[9] or organic particles^[10], such as polystyrene or calcium carbonate, were used as hard templates to create hollow cavities, However, the multistep synthetic process and the lack of structural robustness of the shells upon template removal process weaken their applica- tion. Soft templates, including oil-in-water emulsions^[11,12], vesicles^[13], micelle^[14,15] and gas bubbles^[16], are applied widely.
基金financially supported by the science and technology activity program of the National Natural Science Foundation of China(grant no.22242005)。
文摘The unique mathematical perspectives and principal concepts of topology have not only promoted the development of other branches of mathematics but have also deeply influenced other subjects,particularly physics and chemistry.This minireview aims to elucidate the substantial influence of topology on chemistry by critically examining both the contributions of topology to current chemical science and its potential future impacts.We will discuss the topology of molecular structures and assemblies across various scales—from small molecules and mechanically interlocked molecules to polymers,biomacromolecules,and supramolecular networks.This discussion will include an exploration of cutting-edge techniques for characterizing topological features,underscoring the role of topology as a novel paradigm for the design and synthesis of new molecular assemblies.Furthermore,a critical analysis of topology’s role in the development of functional materials—such as photonic materials,polymers,biomacromolecules,and chiral materials—will demonstrate its emerging significance as a crucial parameter in unveiling novel properties and functionalities.Given topology’s formidable potential,it is anticipated to be used increasingly to address pivotal challenges within chemistry and adjacent disciplines.
基金supported by the National Natural Science Foundation of China(No.21931008,S.C.,21975184,Y.D.,21873072,21922304,L.H.)the science foundation of the Shanghai Municipal science and Technology Commission(19JC1410300,S.C).
文摘Chirality is an indispensable integral of biological system.As an important part of organisms,chiral organic structure of bone has been extensively investigated.However,the chirality of bone minerals is unclear and not fully determined.Here,we report nine levels of fractal-like chirality of bone minerals by combining electron microscopic and spectrometric characterizations.The primary helically twisted acicular apatite crystals inside collagen fibrils and between fibrils merge laterally to form secondary helical subplatelets.The chiral arrangement of several subplatelets forms tertiary spiral mineral platelets.Further coherent stepwise stacking of mineral platelets with collagen fibrils leads to quaternary to ninth levels,which reconciled the previous conflicting models.The optical activities in the UV-visible,infrared and terahertz regions demonstrated chirality from atomic to macroscopic scales based on circularly selective absorption and Bragg resonance at different levels of chirality.Our findings provide new insight into the structural integrity of bone,osteology,forensic medicine and archaeology and inspire the design of novel biomaterials.
基金supported by the National Natural Science Foundation of China (Nos. 21471099, 21601123)
文摘Chiral mesoporous silica ribbons and rods with inversed handedness have been synthesized with the same enantio pure N-acylaminoacidat temperatures of 0℃and 20℃ respectively. With involving Cu^(2+)and meso-tetra(4-sulfonatophenyl)porphyrin(TPPS) as probes, ribbons and rods revealed opposite signals in diffuse-reflectance circular dichroism(DRCD) spectra, indicating the existence of inversed supramolecular chiral imprintings through helical stacking of amphiphiles. The structural evolution was systematically studied by the freeze-dried products sampled at different time after the addition of silica precursors. The H-bonding-depended molecular orientation probably controls the chiral sense upon forming chiral molecular stacking, which would be the origin of such handedness inversion