期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Principles and technology for stepwise utilization of resources for mitigating deep mine heat hazards 被引量:16
1
作者 HE Manchao CAO Xiuling +4 位作者 XIE Qiao YANG Jiahua QI Ping YANG Qing CHEN Xueqian 《Mining Science and Technology》 EI CAS 2010年第1期20-27,共8页
As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep co... As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep coal resources. Therefore, reducing the working face temperature to improve working conditions by controlling these heat hazards is an urgent problem. Considering problems in cooling deep mines both domestically and abroad along with the actual conditions of the Zhangshuanglou coal mine, we propose a HEMS technology that uses heat resources from deep mines in a stepwise manner. HEMS means a high temperature ex-change machinery system. Mine inrush-water is used as a source of cooling. Twice the energy is extracted from the mine inrush water. Heat is used for building heating in the winter and cold water is used for cooling buildings in the summer. This opens a new technology for stepwise utilization of heat energy in deep mines. Energy conservation and reduced pollution, an improved environment and sustainable economic development are realized by this technique. The economic and social effects are obvious and illustrate a good prospect for the application and extension of the method. 展开更多
关键词 高温危害 技术 资源利用 深部 煤矿安全生产 温度控制 矿井突水 经济发展
下载PDF
Failure mechanism of pump chambers and their optimized design in deep mining at Qishan Coal Mine 被引量:1
2
作者 SUN Xiaoming WU Chuangzhou CAI Feng 《Mining Science and Technology》 EI CAS 2010年第6期825-830,共6页
Pump chambers, normally used as dominant structures in mining engineering to insure the safety and production of un-derground coal mines, become generally deformed under conditions of deep mining. Given the geology an... Pump chambers, normally used as dominant structures in mining engineering to insure the safety and production of un-derground coal mines, become generally deformed under conditions of deep mining. Given the geology and engineering condition of Qishan Coal Mine in Xuzhou, the failure characteristics of pump chambers at the –1000 m level show that the main cause can be attributed to the spatial effect induced by intersectional chambers, where one pump is constructed per well. We developed an opti-mized design of the pump room, in which the pump wells in the traditional design are integrated into one compounding well. We suggest that the new design can limit the spatial effect of intersectional chambers during construction given our relevant numerical simulation. The new design is able to simplify the structure of the pump chamber and reduce the amount of excavation required. Based on a bolt-mesh-anchor with a rigid gap coupling supporting technology, the stability of pump chamber can be improved greatly. 展开更多
关键词 设计优化 深部开采 煤矿生产 泵室 失效机理 采矿工程 空间效应 开采条件
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部