High temperature sliding wear behaviors of ion plating TiN composite coating with ion nitriding interlayer on 3Cr2W8V hot work die steel substrate during 500~700 ℃ were investigated. Phase structure was analyzed by ...High temperature sliding wear behaviors of ion plating TiN composite coating with ion nitriding interlayer on 3Cr2W8V hot work die steel substrate during 500~700 ℃ were investigated. Phase structure was analyzed by XRD and adhesion strength of TiN coating was measured by scratch test. The worn morphologies and wear mechanism of TiN composite coating were observed and analyzed by using SEM. The results showed that both adhesion strength and hardness of TiN composite coating with ion nitriding interlayer are higher than those of single TiN coating. Ion nitriding interlayer provides a stronger support for TiN coating. With increasing temperature, the wear rates and friction coefficient of all tested coatings increase. The wear resistance of TiN composite coating is better than that of single TiN coating. The wear mechanisms of TiN composite coating are mainly adhesion transfer wear and abrasive wear. The adhesion transfer wear becomes more severe as the test temperature increases. [展开更多
Based on the finite element simulation of profile extrusion process, the effect of local extrusion ratio, die bearing area and the distance between extrusion cylindrical center and local die orfice center on mental fl...Based on the finite element simulation of profile extrusion process, the effect of local extrusion ratio, die bearing area and the distance between extrusion cylindrical center and local die orfice center on mental flow velocity was investigated. The laws of deformed metal flow on profile extrusion process were obtained. The smaller the local extrusion ratio, the faster the metal flow velocity; the smaller the area of die bearing, the faster the metal flow velocity; the smaller the distance of position of local die orifice(the closer the distance of position of local die orifice from extrusion cylindrical axis), the faster the metal flow velocity. The effect of main parameters of die structure on metal flow velocity was integrated and the mathematical model of determination of die bearing length in design of aluminum profile extrusion die was proposed. The calculated results with proposed model were well compared with the experimental results. The proposed model can be applied to determine die bearing length in design of aluminum profile extrusion die.展开更多
The dendrite growth process during the solidification of the Al-4.5%Cu binary alloy was simulated using the phase-field model, proposed by Kim et al. Solute diffusion equation and heat transfer equation were solved si...The dendrite growth process during the solidification of the Al-4.5%Cu binary alloy was simulated using the phase-field model, proposed by Kim et al. Solute diffusion equation and heat transfer equation were solved simultaneously. The effects of the noise on the dendrite growth, solute and temperature profile in the undercooled alloy melt were investigated. The results indicate that the noise can trigger the growth of the secondary arms, and increase the highest temperature and solute concentration, but not influence the tip operating state. The solute and temperature gradients in the tip are the highest.展开更多
Through simulation analyses of vacuum counter-pressure casting fuzzy control systems based on MATLAB, fuzzy control systems designed by simulation can track technical route established well. When transmission function...Through simulation analyses of vacuum counter-pressure casting fuzzy control systems based on MATLAB, fuzzy control systems designed by simulation can track technical route established well. When transmission functions of vacuum counter-pressure casting controlled objects are changed in operation, fuzzy control systems can carry on self-regulation and stabilize quickly, and embody the advantages of fleet response velocity and little adjusting quantity. The design of vacuum counter-pressure casting fuzzy control systems is accelerated and improved greatly by simulation based on MATLAB. Meanwhile, their design is accurate and reliable. Moreover, microstructure and properties of thin-wall aluminum alloy castings are improved effectively by using fuzzy control systems.展开更多
The methodology was used to conduct the upper bound analysis of thixotropic extrusion process of semi-solid metal. The calculated formulas of deformed power were derived. The relationship among relative stress, fricti...The methodology was used to conduct the upper bound analysis of thixotropic extrusion process of semi-solid metal. The calculated formulas of deformed power were derived. The relationship among relative stress, frictional factor and die semi-angle were obtained. The relative stress increases with increasing frictional factor, whose value increases with increasing area reduction ratio of a certain die semi-angle. The relative stress firstly decreases and then increases with increasing die semi-angle at a certain area reduction ratio. So, the optimal die semi-angle exists with the corresponding minimum relative stress. The calculated results are in agreement with the experimental ones, which are applied to directing technological practice of axis-symmetry forward extrusion of semi-solid magnesium alloys.展开更多
Warpage of injected parts is one of the most difficult problems which often troublesengineers. Because all factors, including process condition, mold structure and materialproperty, have influences on Warpage, it is d...Warpage of injected parts is one of the most difficult problems which often troublesengineers. Because all factors, including process condition, mold structure and materialproperty, have influences on Warpage, it is difficult to control the warpage of big parts bydrawing on experience. To ensure the quality of percision of injected parts, simulating injection process and predicting warpage is an effective method.展开更多
文摘High temperature sliding wear behaviors of ion plating TiN composite coating with ion nitriding interlayer on 3Cr2W8V hot work die steel substrate during 500~700 ℃ were investigated. Phase structure was analyzed by XRD and adhesion strength of TiN coating was measured by scratch test. The worn morphologies and wear mechanism of TiN composite coating were observed and analyzed by using SEM. The results showed that both adhesion strength and hardness of TiN composite coating with ion nitriding interlayer are higher than those of single TiN coating. Ion nitriding interlayer provides a stronger support for TiN coating. With increasing temperature, the wear rates and friction coefficient of all tested coatings increase. The wear resistance of TiN composite coating is better than that of single TiN coating. The wear mechanisms of TiN composite coating are mainly adhesion transfer wear and abrasive wear. The adhesion transfer wear becomes more severe as the test temperature increases. [
文摘Based on the finite element simulation of profile extrusion process, the effect of local extrusion ratio, die bearing area and the distance between extrusion cylindrical center and local die orfice center on mental flow velocity was investigated. The laws of deformed metal flow on profile extrusion process were obtained. The smaller the local extrusion ratio, the faster the metal flow velocity; the smaller the area of die bearing, the faster the metal flow velocity; the smaller the distance of position of local die orifice(the closer the distance of position of local die orifice from extrusion cylindrical axis), the faster the metal flow velocity. The effect of main parameters of die structure on metal flow velocity was integrated and the mathematical model of determination of die bearing length in design of aluminum profile extrusion die was proposed. The calculated results with proposed model were well compared with the experimental results. The proposed model can be applied to determine die bearing length in design of aluminum profile extrusion die.
文摘The dendrite growth process during the solidification of the Al-4.5%Cu binary alloy was simulated using the phase-field model, proposed by Kim et al. Solute diffusion equation and heat transfer equation were solved simultaneously. The effects of the noise on the dendrite growth, solute and temperature profile in the undercooled alloy melt were investigated. The results indicate that the noise can trigger the growth of the secondary arms, and increase the highest temperature and solute concentration, but not influence the tip operating state. The solute and temperature gradients in the tip are the highest.
基金Project(BB200300088) supported by the Commission of Science Technology and Industry for National Defence Fund ofChina
文摘Through simulation analyses of vacuum counter-pressure casting fuzzy control systems based on MATLAB, fuzzy control systems designed by simulation can track technical route established well. When transmission functions of vacuum counter-pressure casting controlled objects are changed in operation, fuzzy control systems can carry on self-regulation and stabilize quickly, and embody the advantages of fleet response velocity and little adjusting quantity. The design of vacuum counter-pressure casting fuzzy control systems is accelerated and improved greatly by simulation based on MATLAB. Meanwhile, their design is accurate and reliable. Moreover, microstructure and properties of thin-wall aluminum alloy castings are improved effectively by using fuzzy control systems.
文摘The methodology was used to conduct the upper bound analysis of thixotropic extrusion process of semi-solid metal. The calculated formulas of deformed power were derived. The relationship among relative stress, frictional factor and die semi-angle were obtained. The relative stress increases with increasing frictional factor, whose value increases with increasing area reduction ratio of a certain die semi-angle. The relative stress firstly decreases and then increases with increasing die semi-angle at a certain area reduction ratio. So, the optimal die semi-angle exists with the corresponding minimum relative stress. The calculated results are in agreement with the experimental ones, which are applied to directing technological practice of axis-symmetry forward extrusion of semi-solid magnesium alloys.
基金Project supported by the Key Project of the National Eighth 5-Year Plan.
文摘Warpage of injected parts is one of the most difficult problems which often troublesengineers. Because all factors, including process condition, mold structure and materialproperty, have influences on Warpage, it is difficult to control the warpage of big parts bydrawing on experience. To ensure the quality of percision of injected parts, simulating injection process and predicting warpage is an effective method.