期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Assessment of the crucial factors influencing the responses of ammonia and nitrous oxide emissions to controlled release nitrogen fertilizer: A meta-analysis
1
作者 Lü Hui-dan WANG Xi-ya +1 位作者 PAN Zhao-long ZHAO Shi-cheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第11期3549-3559,共11页
Reducing ammonia(NH3) and nitrous oxide(N2O) emissions have great effects on mitigating nitrogen(N) nutrient loss and greenhouse gas emissions. Controlled release urea(CRU) can control the N release rate, which reduce... Reducing ammonia(NH3) and nitrous oxide(N2O) emissions have great effects on mitigating nitrogen(N) nutrient loss and greenhouse gas emissions. Controlled release urea(CRU) can control the N release rate, which reduces reactive N loss and increases nitrogen use efficiency relative to conventional urea(CU). However, the crucial factors influencing the responses of NH3and N2O emissions to CRU relative to CU are still unclear. In this study, we evaluated the responses of NH3and N2O emissions to CRU based on collected field data with a meta-analysis. CRU reduced the NH3and N2O emissions by 32.7 and 25.0% compared with CU, respectively. According to subgroup analysis, CRU presented better mitigation of NH3and N2O emissions in soils with pH 6.5–7.5(–47.9 and –23.7%) relative to either pH<6.5(–28.5and –21.4%) or pH>7.5(–29.3 and –17.3%), and in the rice season(–34.8 and –29.1%) relative to the wheat season(–19.8 and –22.8%). The responses of NH3and N2O emissions to CRU increased from rainfed(–30.5 and –17.0%) to irrigated(–32.5 and –22.9%), and then to paddy(–34.8 and –29.1%) systems. In addition, the response of N2O emission mitigation increased with increases in soil total nitrogen(TN);however, soil TN did not significantly affect the response of NH3volatilization. The reduction in NH3emission was greater in sandy-textured soil(–57.7%) relative to loam-textured(–32.9%) and clay-textured(–32.3%) soils, whereas soil texture did not affect N2O emission. Overall, CRU was a good option for reducing the NH3and N2O emissions relative to CU in agricultural production. This analysis improves our understanding of the crucial environmental and management factors influencing the mitigation of NH3and N2O emissions under CRU application, and these site-specific factors should be considered when applying CRU to reduce reactive N loss and increase NUE. 展开更多
关键词 controlled release urea NH VOLATILIZATION N O emission environmental factor management practice
下载PDF
Identifying the critical phosphorus balance for optimizing phosphorus input and regulating soil phosphorus effectiveness in a typical winter wheat-summer maize rotation system in North China
2
作者 XU Meng-ze WANG Yu-hong +6 位作者 NIE Cai-e SONG Gui-pei XIN Su-ning LU Yan-li BAI You-lu ZHANG Yin-jie WANG Lei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第12期3769-3782,共14页
Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which no... Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which not only wastes phosphate resources but also causes P accumulation and groundwater pollution.Here,we hypothesized that the apparent P balance of a crop system could be used as an indicator for identifying the critical P input in order to obtain a high yield with high phosphorus use efficiency(PUE).A 12-year field experiment with P fertilization rates of 0,45,90,135,180,and 225 kg P_(2)O_(5)ha^(-1)was conducted to determine the crop yield,PUE,and soil Olsen-P value response to P balance,and to optimize the P input.Annual yield stagnation occurred when the P fertilizer application exceeded a certain level,and high yield and PUE levels were achieved with annual P fertilizer application rates of 90-135 kg P_(2)O_(5)ha^(-1).A critical P balance range of 2.15-4.45 kg P ha^(-1)was recommended to achieve optimum yield with minimal environmental risk.The critical P input range estimated from the P balance was 95.7-101 kg P_(2)O_(5)ha^(-1),which improved relative yield(>90%)and PUE(90.0-94.9%).In addition,the P input-output balance helps in assessing future changes in Olsen-P values,which increased by 4.07 mg kg^(-1)of P for every 100 kg of P surplus.Overall,the P balance can be used as a critical indicator for P management in agriculture,providing a robust reference for limiting P excess and developing a more productive,efficient and environmentally friendly P fertilizer management strategy. 展开更多
关键词 yield of winter wheat and summer maize phosphorus balance phosphorus use efficiency OLSEN-P critical phosphorus application rate
下载PDF
Combining nitrogen effects and metabolomics to reveal the response mechanisms to nitrogen stress and the potential for nitrogen reduction in maize
3
作者 LU Yan-li SONG Gui-pei +4 位作者 WANG Yu-hong WANG Luo-bin XU Meng-ze ZHOU Li-ping WANG Lei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第9期2660-2672,共13页
The physiological and metabolic differences in maize under different nitrogen(N)levels are the basis of reasonable N management,which is vital in improving fertilizer utilization and reducing environmental pollution.I... The physiological and metabolic differences in maize under different nitrogen(N)levels are the basis of reasonable N management,which is vital in improving fertilizer utilization and reducing environmental pollution.In this paper,on the premise of defining the N fertilizer efficiency and yield under different long-term N fertilization treatments,the corresponding differential metabolites and their metabolic pathways were analyzed by untargeted metabolomics in maize.N stress,including deficiency and excess,affects the balance of carbon(C)metabolism and N metabolism by regulating C metabolites(sugar alcohols and tricarboxylic acid(TCA)cycle intermediates)and N metabolites(various amino acids and their derivatives).L-alanine,L-phenylalanine,L-histidine,and L-glutamine decreased under N deficiency,and L-valine,proline,and L-histidine increased under N excess.In addition to sugar alcohols and the above amino acids in C and N metabolism,differential secondary metabolites,flavonoids(e.g.,kaempferol,luteolin,rutin,and diosmetin),and hormones(e.g.,indoleacetic acid,trans-zeatin,and jasmonic acid)were initially considered as indicators for N stress diagnosis under this experimental conditions.This study also indicated that the leaf metabolic levels of N2(120 kg ha–1 N)and N3(180 kg ha–1 N)were similar,consistent with the differences in their physiological indexes and yields over 12 years.This study verified the feasibility of reducing N fertilization from 180 kg ha–1(locally recommended)to 120 kg ha–1 at the metabolic level,which provided a mechanistic basis for reducing N fertilization without reducing yield,further improving the N utilization rate and protecting the ecological environment. 展开更多
关键词 long-term experiment nitrogen deficiency nitrogen excess METABOLITES UPLC-QTOF
下载PDF
NIGT1 represses plant growth and mitigates phosphate starvation signaling to balance the growth response tradeoff in rice 被引量:1
4
作者 Yuxin Zhang Qianqian Zhang +6 位作者 Meina Guo Xueqing Wang Tianjie Li Qingyu Wu Lihui Li Keke Yi Wenyuan Ruan 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2023年第8期1874-1889,共16页
Inorganic phosphate(Pi)availability is an important factor which affects the growth and yield of crops,thus an appropriate and effective response to Pi fluctuation is critical.However,how crops orchestrate Pi signalin... Inorganic phosphate(Pi)availability is an important factor which affects the growth and yield of crops,thus an appropriate and effective response to Pi fluctuation is critical.However,how crops orchestrate Pi signaling and growth under Pi starvation conditions to optimize the growth defense tradeoff remains unclear.Here we show that a Pi starvationinduced transcription factor NIGT1(NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1)controls plant growth and prevents a hyper-response to Pi starvation by directly repressing the expression of growth-related and Pisignaling genes to achieve a balance between growth and response under a varying Pi environment.NIGT1 directly binds to the promoters of Pi starvation signaling marker genes,like IPS1,mi R827,and SPX2,under Pi-deficient conditions to mitigate the Pi-starvation responsive(PSR).It also directly represses the expression of vacuolar Pi efflux transporter genes VPE1/2 to regulate plant Pi homeostasis.We further demonstrate that NIGT1 constrains shoot growth by repressing the expression of growth-related regulatory genes,including brassinolide signal transduction master regulator BZR1,cell division regulator CYCB1;1,and DNA replication regulator PSF3.Our findings reveal the function of NIGT1 in orchestrating plant growth and Pi starvation signaling,and also provide evidence that NIGT1 acts as a safeguard to avoid hyper-response during Pi starvation stress in rice. 展开更多
关键词 NIGT1 phosphate(Pi) PHRs Pi-starvation responsive(PSR) Pi starvation Pi signaling
原文传递
Application of controlled-release urea increases maize N uptake,environmental benefits and economic returns via optimizing temporal and spatial distributions of soil mineral N
5
作者 Mingxue SUN Juan LI +6 位作者 Lili ZHANG Xiaomeng SU Ning LIU Xiaori HAN Songjiang WU Zhentao SUN Xiangdong YANG 《Pedosphere》 SCIE CAS CSCD 2024年第1期222-235,共14页
The creation of controlled-release urea (CRU) is a potent substitute for conventional fertilizers in order to preserve the availability of nitrogen (N) in soil,prevent environmental pollution,and move toward green agr... The creation of controlled-release urea (CRU) is a potent substitute for conventional fertilizers in order to preserve the availability of nitrogen (N) in soil,prevent environmental pollution,and move toward green agriculture.The main objectives of this study were to assess the impacts of CRU’s full application on maize production and to clarify the connection between the nutrient release pattern of CRU and maize nutrient uptake.In order to learn more about the effects of CRU application on maize yields,N uptake,mineral N (N_(min)) dynamics,N balance in soil-crop systems,and economic returns,a series of field experiments were carried out in 2018–2020 in Dalian City,Liaoning Province,China.There were 4 different treatments in the experiments:no N fertilizer input (control,CK);application of common urea at 210 kg ha^(-1)(U),the ideal fertilization management level for the study site;application of polyurethane-coated urea at the same N input rate as U (PCU);and application of PCU at a 20% reduction in N input rate (0.8PCU).Our findings showed that using CRU (i.e.,PCU and 0.8 PCU) may considerably increase maize N absorption,maintain maize yields,and increase N use efficiency (NUE) compared to U.The grain yield showed considerable positive correlations with total N uptake in leaf in U and 0.8 PCU,but negative correlations with that in PCU,indicating that PCU caused excessive maize absorption while 0.8 PCU could achieve a better yield response to N supply.Besides,PCU was able to maintain N fertilizer in the soil profile 0–20 cm away from the fertilization point,and higher N_(min)content was observed in the 0–20 cm soil layer at various growth stages,particularly at the middle and late growing stages,optimizing the temporal and spatial distributions of N_(min).Additionally,compared to that in U,the apparent N loss rate in PCU was reduced by 36.2%,and applying CRU (PCU and 0.8 PCU) increased net profit by 8.5% to 15.2% with less labor and fertilization frequency.It was concluded that using CRU could be an effective N fertilizer management strategy to sustain maize production,improve NUE,and increase economic returns while minimizing environmental risks. 展开更多
关键词 apparent N loss fertilization management green agriculture maize yield N balance N use efficiency
原文传递
Phosphorus lights up the trade-off between growth and immunity
6
作者 Wenyuan Ruan Meina Guo Keke Yi 《Molecular Plant》 SCIE CSCD 2024年第5期689-690,共2页
How plants respond simultaneously to various biotic and abiotic stresses to balance growth and immunity is an old but vibrant topic.Plants need to effectively integrate multiple signaling inputs to make the final deci... How plants respond simultaneously to various biotic and abiotic stresses to balance growth and immunity is an old but vibrant topic.Plants need to effectively integrate multiple signaling inputs to make the final decision and,thus,use limited resources efficiently.Typically,plant secondary metabolites,including phytohormones,are the key to modulate investment of resources into immunity or growth.However,the molecular mechanisms underlying this allocation dilemma are far from being understood. 展开更多
关键词 IMMUNITY lights INTEGRATE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部