期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Interfacial reinforcement of core-shell HMX@energetic polymer composites featuring enhanced thermal and safety performance
1
作者 Binghui Duan Hongchang Mo +3 位作者 Bojun Tan Xianming Lu Bozhou Wang Ning Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期387-399,共13页
The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves... The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves the pretreatment of HMX to endow—OH groups on the surface via polyalcohol bonding agent modification and in situ coating with nitrate ester-containing polymer,was proposed to address the problem.Two types of energetic polyether—glycidyl azide polymer(GAP)and nitrate modified GAP(GNP)were grafted onto HMX crystal based on isocyanate addition reaction bridged through neutral polymeric bonding agent(NPBA)layer.The morphology and structure of the HMX-based composites were characterized in detail and the core-shell structure was validated.The grafted polymers obviously enhanced the adhesion force between HMX crystals and fluoropolymer(F2314)binder.Due to the interfacial reinforcement among the components,the two HMX-based composites exhibited a remarkable increment of phase transition peak temperature by 10.2°C and 19.6°C with no more than 1.5%shell content,respectively.Furthermore,the impact and friction sensitivity of the composites decreased significantly as a result of the barrier produced by the grafted polymers.These findings will enhance the future prospects for the interface design of energetic composites aiming to solve the weak interface and safety concerns. 展开更多
关键词 HMX crystals Polyalcohol bonding agent Energetic polymer Core-shell structure Interfacial reinforcement
下载PDF
Understanding the alkyl effect of geminal dinitropropyl ester energetic plasticizers on hydroxyl terminated polybutadiene(HTPB):Simultaneous tuning on low temperature behavior and processability
2
作者 Baodong Zhao Yinglei Wang +3 位作者 Fulei Gao Yajing Liu Weixiao Liu Feng Ding 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期364-371,共8页
Geminal dinitropropyl ester plasticizers(DNPEPs) possess excellent energetic performances which provide good potentials as insensitive plasticizer. In this study, we design and synthesize DNPEPs with different alkane ... Geminal dinitropropyl ester plasticizers(DNPEPs) possess excellent energetic performances which provide good potentials as insensitive plasticizer. In this study, we design and synthesize DNPEPs with different alkane chain parts, and systematically investigate their structure-property relationships.Results show that DNPEPs have impact sensitivities all higher than 25.2 J, thermal decomposition temperatures all higher than 254 ℃, and glass transition temperatures(T_(g)) lower than-90 ℃.Furthermore, the effects of DNPEPs as plasticizer are studied on hydroxyl terminated polybutadiene(HTPB) in detail, including the viscosity, glass transition temperatures and others. It is noteworthy that 2,2-dinitropropyl nonanoate(DNPNc) among these DNPEPs exhibits the most expected simultaneous tuning effects on both viscosity and T_(g) of HTPB systems, providing favorable potentials to replace the conventional plastizers as dioctyl sebacate(DOS) in the HTPB based propellants and explosives. 展开更多
关键词 Molecular simulation Experimental validation Preparation Energetic plasticizer Glass transition temperature Viscosity
下载PDF
Extra contribution to the crystal stability of insensitive explosive TATB: The cooperativity of intermolecular interactions
3
作者 Zhi-xiang Zhang Yi-tao Si +5 位作者 Tao Yu Wei-peng Lai Yi-ding Ma Mao-chang Liu Ying-zhe Liu Bo-zhou Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期88-98,共11页
An in-depth analysis on the cooperativity of intermolecular interactions including hydrogen bonding andπ-π stacking in 1,3,5-triamino-2,4,6-trinitrobenzene(TATB) crystal was studied. Two quantities, cooperativity ra... An in-depth analysis on the cooperativity of intermolecular interactions including hydrogen bonding andπ-π stacking in 1,3,5-triamino-2,4,6-trinitrobenzene(TATB) crystal was studied. Two quantities, cooperativity rate and energy, were defined to evaluate the nature and strength of cooperativity in a series of clusters diverging from 1D to 3D prototypes. The origin and mechanism of the cooperative effect were settled to demonstrate that the nature of cooperativity is determined by whether the non-covalent interactions compete or promote with each other, which is manifested by the changing trend of electron transfer. There exists obvious cooperative effect in intra-layer and inter-layer structures as they own the equivalent non-covalent interactions, while anti-cooperative effect is also observed if two interactions correlate with each other. On the whole, in the process of crystal formation, the apparent cooperativity is the check and balance of the two effects, which is capable to support a global interaction among all of molecules and contribute to the stabilization of system. Based on the results, one may get a new insight to understand the relationship between non-covalent interactions and low impact sensitivity. 展开更多
关键词 COOPERATIVITY Non-covalent interaction Low-sensitivity Explosives Charge transfer
下载PDF
Green‑Solvent Processed Blade‑Coating Organic Solar Cells with an Efficiency Approaching 19%Enabled by Alkyl‑Tailored Acceptors 被引量:1
4
作者 Hairui Bai Ruijie Ma +23 位作者 Wenyan Su Top Archie Dela Pea Tengfei Li Lingxiao Tang Jie Yang Bin Hu Yilin Wang Zhaozhao Bi Yueling Su Qi Wei Qiang Wu Yuwei Duan Yuxiang Li Jiaying Wu Zicheng Ding Xunfan Liao Yinjuan Huang Chao Gao Guanghao Lu Mingjie Li Weiguo Zhu Gang Li Qunping Fan Wei Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期449-462,共14页
Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE dr... Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE drop when the bladecoating and/or green-solvents toward large-scale printing are used instead,which hampers the practical development of OSCs.Here,a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused endgroup.Thanks to the N-alkyl engineering,NIR-absorbing YR-SeNF series show different crystallinity,packing patterns,and miscibility with polymeric donor.The studies exhibit that the molecular packing,crystallinity,and vertical distribution of active layer morphologies are well optimized by introducing newly designed guest acceptor associated with tailored N-alkyl chains,providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YRSeNF-based OSCs.As a result,a record-high PCE approaching 19%is achieved in the blade-coating OSCs fabricated from a greensolvent o-xylene with high-boiling point.Notably,ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep>80%of the initial PCEs for even over 400 h.Our alkyl-tailored guest acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs,which paves a way for industrial development. 展开更多
关键词 Alkyl-tailored guest acceptors Blade-coating Green solvent processing Stability Organic solar cells
下载PDF
Intra-Ring Bridging:A Strategy for Molecular Design of Highly Energetic Nitramines 被引量:2
5
作者 Linyuan Wen Tao Yu +4 位作者 Weipeng Lai Jinwen Shi Maochang Liu Yingzhe Liu Bozhou Wang 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2021年第10期2857-2864,共8页
Main observation and conclusion Important progress has been made in the development of energetic molecules with high performance by computer-aided molecular design in recent years,but structural novelty of organic sca... Main observation and conclusion Important progress has been made in the development of energetic molecules with high performance by computer-aided molecular design in recent years,but structural novelty of organic scaffolds is insufficient.In this work,we propose an intra-ring bridging strategy inspired by the known energetic nitramines to design novel polycyclic and cage energetic molecules.More than 100 energetic structures were designed by introducing the C—C bridges and increasing the ring size.The synthesis difficulty is considered besides the two most concerned properties of EMs,energy and safety.After a comprehensive estimation,a symmetric cage molecule labeled as 8U-30 was finally selected because of its relatively high detonation performance,and comparable impact sensitivity as well as synthetic accessibility with CL-20.Hopefully,the proposed strategy could be utilized in further molecular design to gain various scaffolds,especially cage structures,for different demands. 展开更多
关键词 Molecular modeling Energetic materials Cage compounds Computational chemistry NITRAMINES
原文传递
A Novel Energetic Ionic Salt: Hydroxylammonium Potassium 3,3’-Dinitro-5,5’-bis-1,2,4-triazole-1,1’-diolate Dihydrate 被引量:1
6
作者 罗义芬 翟连杰 +3 位作者 毕福强 霍欢 李祥志 王伯周 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2020年第1期96-103,3,共9页
A novel energetic ionic salt,hydroxylammonium potassium 3,3?-dinitro-5,5?-bis-1,2,4-triazole-1,1?-diolate dihydrate[(NH3OH)2K(DNOBT)1.5?2H2O],was synthesized and structurally characterized by elemental analysis,IR spe... A novel energetic ionic salt,hydroxylammonium potassium 3,3?-dinitro-5,5?-bis-1,2,4-triazole-1,1?-diolate dihydrate[(NH3OH)2K(DNOBT)1.5?2H2O],was synthesized and structurally characterized by elemental analysis,IR spectra,13C NMR and single-crystal X-ray diffraction.(NH3OH)2K(DNOBT)1.5?2H2O crystallizes in triclinic system,space group P with a=7.9212(6),b=9.1924(7),c=14.2549(15)?,a=103.917(2)°,β=99.736(2)°,g=104.8110(10)°,V=944.16(14)?^3,Z=2,Dc=1.855 g/cm^3,F(000)=538,μ=0.386 mm^-1,S=1.070,the final R=0.0525 and wR(I>2s(I))=0.1593.Thermal decomposition of(NH3OH)2K(DNOBT)1.5?2H2O and its intermediate potassium 1?-hydroxy-3,3?-dinitro-5,5?-bis-1,2,4-triazole-1-olate monohydrate[K(HDNOBT)?H2O]was studied by using DSC and TG-DTG.It was found that(NH3OH)2K(DNOBT)1.5?2H2O,which has primarily one exothermic decomposition process at 248.2℃,has better thermal stability than K(HDNOBT)?H2O which is decomposed at 210.9℃. 展开更多
关键词 hydroxylammonium POTASSIUM 3 3’-dinitro-5 5’-bis-1 2 4-triazole-1 1’-diolatedihydrate synthesis crystal structure thermal decomposition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部