期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Dislocation density model and microstructure of 7A85 aluminum alloy during thermal deformation 被引量:7
1
作者 HU Jian-liang WU Xiu-jiang +3 位作者 BO Hong JIAO Zi-teng HUANG Shi-quan JIN Miao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第10期2999-3007,共9页
The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffract... The microstructure evolution of 7A85 aluminum alloy at the conditions of strain rate(0.001−1 s^(−1))and deformation temperature(250−450°C)was studied by optical microscopy(OM)and electron back scattering diffraction(EBSD).Based on the K-M dislocation density model,a two-stage K-M dislocation density model of 7A85 aluminum alloy was established.The results reveal that dynamic recovery(DRV)and dynamic recrystallization(DRX)are the main mechanisms of microstructure evolution during thermal deformation of 7A85 aluminum alloy.350−400°C is the transformation zone from dynamic recovery to dynamic recrystallization.At low temperature(≤350°C),DRV is the main mechanism,while DRX mostly occurs at high temperature(≥400°C).At this point,the sensitivity of microstructure evolution to temperature is relatively high.As the temperature increased,the average misorientation angle(θˉ_(c))increased significantly,ranging from 0.93°to 7.13°.Meanwhile,the f_(LAGBs) decreased with the highest decrease of 24%. 展开更多
关键词 hot deformation microstructure evolution dynamic recrystallization dislocation density model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部