期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Stability and reinforcement analysis of rock slope based on elasto-plastic finite element method 被引量:2
1
作者 刘耀儒 武哲书 +2 位作者 常强 李波 杨强 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2739-2751,共13页
The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional... The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China. 展开更多
关键词 stability analysis rock slope plastic complementary energy(PCE) unbalanced forces elasto-plasticity FEM
下载PDF
Effective stress law for rock masses and its application in impoundment analysis based on deformation reinforcement theory 被引量:1
2
作者 CHENG Li LIU Yao-ru +2 位作者 PAN Yuan-wei YANG Qiang LV Zheng 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期218-229,共12页
Reservoir impoundment is related to several hydraulic engineering concerns,including irreversible valley contractions,landslides and reservoir-induced earthquakes.However,these phenomena,such as valley contractions,ar... Reservoir impoundment is related to several hydraulic engineering concerns,including irreversible valley contractions,landslides and reservoir-induced earthquakes.However,these phenomena,such as valley contractions,are hardly to be explained by the conventional method.The scientific understanding of water effects during impoundment and their hazards to hydraulic structure are needed.The effective stress law for fissured rock masses is introduced in the elasto-plastic model employing the Drucker-Prager criterion and implemented in the three dimension(3D)nonlinear finite element method(FEM)program Three-dimensional FINite Element(TFINE).The slope deforms towards river-way during impoundment since the increasing pore pressure in fissures changes stress state and leads to additional plastic deformation in the rock materials.The value of Biot coefficient and the influence of water on rock materials are discussed in detail.Thus,the mechanism of slope deformation during the impoundment of Jinping-I arch dam is revealed,and the deformation is accurately measured.The application of the effective stress law provides a method to consider stress assessment,deformation evaluation and stability estimate of hydraulic structures during the impoundment process.This is a beneficial exploration and an improvement of hydraulic engineering design. 展开更多
关键词 effective stress law elasto-plastic FEM model Biot coefficient IMPOUNDMENT valley contractions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部