Indium oxide supported nickel catalyst has been experimentally confirmed to be highly active for CO_(2) hydrogenation towards methanol.In this work,the reaction mechanism for CO_(2) hydrogenation to methanol has been ...Indium oxide supported nickel catalyst has been experimentally confirmed to be highly active for CO_(2) hydrogenation towards methanol.In this work,the reaction mechanism for CO_(2) hydrogenation to methanol has been investigated on a model Ni/In_(2)O_(3) catalyst,i.e.,Ni_(4)/In_(2)O_(3),via the density functional theory(DFT)study.Three possible reaction pathways,i.e.,the formate pathway,CO hydrogenation and the reverse water-gas-shift(RWGS)pathways,have been examined on this model catalyst.It has been demonstrated that the RWGS pathway is the most theoretically-favored for CO_(2) hydrogenation to methanol.The complete RWGS pathway follows CO_(2)+6 H→COOH+5 H→CO+H_(2)O+4 H→HCO+H_(2)O+3 H→H_(2)CO+H_(2)O+2 H→H_(3)CO+H_(2)O+H→H_(3)COH+H_(2) O.Furthermore,it has been also proved that the interfacial oxygen vacancy can serve as the active site for boosting the CO_(2) adsorption and charge transfer between the nickel species and indium oxide,which synergistically promotes the consecutive CO_(2) hydrogenation towards methanol.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 21536008 and 21621004).
文摘Indium oxide supported nickel catalyst has been experimentally confirmed to be highly active for CO_(2) hydrogenation towards methanol.In this work,the reaction mechanism for CO_(2) hydrogenation to methanol has been investigated on a model Ni/In_(2)O_(3) catalyst,i.e.,Ni_(4)/In_(2)O_(3),via the density functional theory(DFT)study.Three possible reaction pathways,i.e.,the formate pathway,CO hydrogenation and the reverse water-gas-shift(RWGS)pathways,have been examined on this model catalyst.It has been demonstrated that the RWGS pathway is the most theoretically-favored for CO_(2) hydrogenation to methanol.The complete RWGS pathway follows CO_(2)+6 H→COOH+5 H→CO+H_(2)O+4 H→HCO+H_(2)O+3 H→H_(2)CO+H_(2)O+2 H→H_(3)CO+H_(2)O+H→H_(3)COH+H_(2) O.Furthermore,it has been also proved that the interfacial oxygen vacancy can serve as the active site for boosting the CO_(2) adsorption and charge transfer between the nickel species and indium oxide,which synergistically promotes the consecutive CO_(2) hydrogenation towards methanol.